ADGN: An Algorithm for Record Linkage Using Address, Date of Birth, Gender, and Name

IF 1.5 Q2 SOCIAL SCIENCES, MATHEMATICAL METHODS Statistics and Public Policy Pub Date : 2017-01-01 DOI:10.1080/2330443X.2017.1389620
S. Ansolabehere, Eitan Hersh
{"title":"ADGN: An Algorithm for Record Linkage Using Address, Date of Birth, Gender, and Name","authors":"S. Ansolabehere, Eitan Hersh","doi":"10.1080/2330443X.2017.1389620","DOIUrl":null,"url":null,"abstract":"ABSTRACT This article presents an algorithm for record linkage that uses multiple indicators derived from combinations of fields commonly found in databases. Specifically, the quadruplet of Address (A), Date of Birth (D), Gender (G), and Name (N) and any triplet of A-D-G-N (i.e., ADG, ADN, AGN, and DGN) also link records with an extremely high likelihood. Matching on multiple identifiers avoids problems of missing data, inconsistent fields, and typographical errors. We show, using a very large database from the State of Texas, that exact matches using combinations A, D, G, and N produce a rate of matches comparable to 9-Digit Social Security Number. Further examination of the linkage rates show that reporting of the data at a higher level of aggregation, such as Birth Year instead of Date of Birth and omission of names, makes correct matches between databases highly unlikely, protecting an individual’s records.","PeriodicalId":43397,"journal":{"name":"Statistics and Public Policy","volume":" ","pages":"1 - 10"},"PeriodicalIF":1.5000,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/2330443X.2017.1389620","citationCount":"37","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistics and Public Policy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/2330443X.2017.1389620","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"SOCIAL SCIENCES, MATHEMATICAL METHODS","Score":null,"Total":0}
引用次数: 37

Abstract

ABSTRACT This article presents an algorithm for record linkage that uses multiple indicators derived from combinations of fields commonly found in databases. Specifically, the quadruplet of Address (A), Date of Birth (D), Gender (G), and Name (N) and any triplet of A-D-G-N (i.e., ADG, ADN, AGN, and DGN) also link records with an extremely high likelihood. Matching on multiple identifiers avoids problems of missing data, inconsistent fields, and typographical errors. We show, using a very large database from the State of Texas, that exact matches using combinations A, D, G, and N produce a rate of matches comparable to 9-Digit Social Security Number. Further examination of the linkage rates show that reporting of the data at a higher level of aggregation, such as Birth Year instead of Date of Birth and omission of names, makes correct matches between databases highly unlikely, protecting an individual’s records.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
ADGN:一种使用地址、出生日期、性别和姓名进行记录链接的算法
本文提出了一种记录链接算法,该算法使用从数据库中常见的字段组合派生的多个指标。具体来说,地址(A)、出生日期(D)、性别(G)和姓名(N)的四联体以及A-D-G-N的任何三联体(即ADG、ADN、AGN和DGN)也极有可能将记录联系起来。对多个标识符进行匹配可以避免数据丢失、字段不一致和排版错误等问题。通过使用来自德克萨斯州的一个非常大的数据库,我们展示了使用组合a、D、G和N进行精确匹配所产生的匹配率与9位社会安全号码相当。对链接率的进一步检查表明,在更高的聚合级别上报告数据,例如用出生年份代替出生日期和遗漏姓名,使数据库之间的正确匹配极不可能,从而保护了个人的记录。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Statistics and Public Policy
Statistics and Public Policy SOCIAL SCIENCES, MATHEMATICAL METHODS-
CiteScore
3.20
自引率
6.20%
发文量
13
审稿时长
32 weeks
期刊最新文献
State-Building through Public Land Disposal? An Application of Matrix Completion for Counterfactual Prediction Clusters of Jail Incarcerations in US Counties: 2010-2018 Comment on ‘What protects the autonomy of the Federal Statistics Agencies? An Assessment of the Procedures in Place That Protect the Independence and Objectivity of Official Statistics” by Pierson et al. On Coping in a Non-Binary World: Rejoinder to Biedermann and Kotsoglou Commentary on “Three-Way ROCs for Forensic Decision Making” by Nicholas Scurich and Richard S. John (in: Statistics and Public Policy)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1