Regression Models for Lifetime Data: An Overview

IF 0.9 Q4 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS Stats Pub Date : 2022-12-07 DOI:10.3390/stats5040078
C. Caroni
{"title":"Regression Models for Lifetime Data: An Overview","authors":"C. Caroni","doi":"10.3390/stats5040078","DOIUrl":null,"url":null,"abstract":"Two methods dominate the regression analysis of time-to-event data: the accelerated failure time model and the proportional hazards model. Broadly speaking, these predominate in reliability modelling and biomedical applications, respectively. However, many other methods have been proposed, including proportional odds, proportional mean residual life and several other “proportional” models. This paper presents an overview of the field and the concept behind each of these ideas. Multi-parameter modelling is also discussed, in which (in contrast to, say, the proportional hazards model) more than one parameter of the lifetime distribution may depend on covariates. This includes first hitting time (or threshold) regression based on an underlying latent stochastic process. Many of the methods that have been proposed have seen little or no practical use. Lack of user-friendly software is certainly a factor in this. Diagnostic methods are also lacking for most methods.","PeriodicalId":93142,"journal":{"name":"Stats","volume":" ","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2022-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stats","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/stats5040078","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Two methods dominate the regression analysis of time-to-event data: the accelerated failure time model and the proportional hazards model. Broadly speaking, these predominate in reliability modelling and biomedical applications, respectively. However, many other methods have been proposed, including proportional odds, proportional mean residual life and several other “proportional” models. This paper presents an overview of the field and the concept behind each of these ideas. Multi-parameter modelling is also discussed, in which (in contrast to, say, the proportional hazards model) more than one parameter of the lifetime distribution may depend on covariates. This includes first hitting time (or threshold) regression based on an underlying latent stochastic process. Many of the methods that have been proposed have seen little or no practical use. Lack of user-friendly software is certainly a factor in this. Diagnostic methods are also lacking for most methods.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
寿命数据的回归模型:综述
时间-事件数据的回归分析主要有两种方法:加速故障时间模型和比例风险模型。从广义上讲,这些分别在可靠性建模和生物医学应用中占主导地位。然而,已经提出了许多其他方法,包括比例比值、比例平均剩余寿命和其他几个“比例”模型。本文概述了这一领域以及每一种想法背后的概念。还讨论了多参数建模,其中(与比例危险模型相比)寿命分布的多个参数可能取决于协变量。这包括基于潜在随机过程的首次命中时间(或阈值)回归。已经提出的许多方法几乎没有实际用途。缺乏用户友好的软件无疑是造成这种情况的一个因素。大多数方法也缺乏诊断方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
0.60
自引率
0.00%
发文量
0
审稿时长
7 weeks
期刊最新文献
Bidirectional f-Divergence-Based Deep Generative Method for Imputing Missing Values in Time-Series Data. Investigating Risk Factors for Racial Disparity in E-Cigarette Use with PATH Study. Precise Tensor Product Smoothing via Spectral Splines Predicting Random Walks and a Data-Splitting Prediction Region The Mediating Impact of Innovation Types in the Relationship between Innovation Use Theory and Market Performance
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1