Synthesis and structure characterization of novel polyampholytes based on cellulose

IF 9.9 Q1 MATERIALS SCIENCE, COMPOSITES Advanced Industrial and Engineering Polymer Research Pub Date : 2022-01-01 DOI:10.1016/j.aiepr.2021.06.001
Annett Pfeifer, Agnes Kemmer, Thomas Heinze
{"title":"Synthesis and structure characterization of novel polyampholytes based on cellulose","authors":"Annett Pfeifer,&nbsp;Agnes Kemmer,&nbsp;Thomas Heinze","doi":"10.1016/j.aiepr.2021.06.001","DOIUrl":null,"url":null,"abstract":"<div><p>Sulfobetainic polymers were synthesized by polymeranalogous reaction of new amino celluloses starting from cellulose tosylate. To obtain different amino celluloses as starting building blocks, a comprehensive study with a selection of asymmetric and symmetric <em>N-</em>alkylated diamines was performed. For reaction with asymmetric diamines, it turned out that the primary amino moiety reacts preferably. Derivatives thus obtained consist in a neutral main structural unit and a cationic side structural unit, which is not described up to now. In order to investigate the reactivity of the amino celluloses 6-deoxy-6-(<em>N,N,N′,N′</em>-tetramethylethylenediamino) cellulose was used as uniform starting material for the design of novel polyampholytes by conversion with 1,3-propansultone. Detailed structure characterization was implemented by means of 1D and 2D-NMR spectroscopy.</p></div>","PeriodicalId":7186,"journal":{"name":"Advanced Industrial and Engineering Polymer Research","volume":"5 1","pages":"Pages 26-32"},"PeriodicalIF":9.9000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.aiepr.2021.06.001","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Industrial and Engineering Polymer Research","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2542504821000324","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
引用次数: 1

Abstract

Sulfobetainic polymers were synthesized by polymeranalogous reaction of new amino celluloses starting from cellulose tosylate. To obtain different amino celluloses as starting building blocks, a comprehensive study with a selection of asymmetric and symmetric N-alkylated diamines was performed. For reaction with asymmetric diamines, it turned out that the primary amino moiety reacts preferably. Derivatives thus obtained consist in a neutral main structural unit and a cationic side structural unit, which is not described up to now. In order to investigate the reactivity of the amino celluloses 6-deoxy-6-(N,N,N′,N′-tetramethylethylenediamino) cellulose was used as uniform starting material for the design of novel polyampholytes by conversion with 1,3-propansultone. Detailed structure characterization was implemented by means of 1D and 2D-NMR spectroscopy.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于纤维素的新型多两性电解质的合成与结构表征
以甲磺酸纤维素为原料,采用高分子模拟反应合成了新型氨基纤维素磺酸基聚合物。为了获得不同的氨基纤维素作为起始构建块,对不对称和对称n -烷基化二胺进行了全面的研究。在与不对称二胺的反应中,结果表明,主要的氨基部分反应较好。由此得到的衍生物由中性主结构单元和阳离子侧结构单元组成,目前尚未描述。为了研究氨基纤维素6-脱氧-6-(N,N,N ',N ' -四亚甲基乙二胺)的反应性,以纤维素为原料,通过与1,3-propansultone的转化,设计了新型多两性聚合物。通过1D和2d核磁共振光谱进行了详细的结构表征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Advanced Industrial and Engineering Polymer Research
Advanced Industrial and Engineering Polymer Research Materials Science-Polymers and Plastics
CiteScore
26.30
自引率
0.00%
发文量
38
审稿时长
29 days
期刊最新文献
Editorial Board Editorial Board Fire performance durability of flame retardants in polymers and coatings Review of thermal conductivity in epoxy thermosets and composites: Mechanisms, parameters, and filler influences Surface grafting POSS to improve the hydrophobicity and fire safety of polyrotaxane based smart phase change materials
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1