Y. Nashchekina, I. Samusenko, I. Zorin, L. Kukhareva, A. Bilibin, M. Blinova
{"title":"Poly(D,L-lactide)/PEG blend films for keratinocyte cultivation and skin reconstruction","authors":"Y. Nashchekina, I. Samusenko, I. Zorin, L. Kukhareva, A. Bilibin, M. Blinova","doi":"10.1088/1748-605X/ab3aa2","DOIUrl":null,"url":null,"abstract":"The objective of this study was to develop a novel porous thin poly(D,L-lactide) (PLA) film as a tissue-engineering scaffold for keratinocytes used for the replacement of damaged skin. Poly(D,l-lactic acid)/poly(ethylene glycol) (PEG: Mw 6000 or 15 000) blend films were formed by a spin coating technique. The properties and structures of these blend films were investigated. PDLA/PEG (6000) blend films were modified by microfibrillar collagen after water incubation to increase hydrophilicity and improve keratinocyte adhesion. Primary keratinocytes were seeded on PLA films, cultivated for 9 d and transplanted to rats with a model skin defect wound. The wound’s healing after keratinocyte transplantation was assayed with histological and immunochemical methods. It was found that skin damage recovery was the most effective after transplantation of keratinocytes on porous PLA film modified with collagen.","PeriodicalId":9016,"journal":{"name":"Biomedical materials","volume":" ","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2019-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1088/1748-605X/ab3aa2","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical materials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1088/1748-605X/ab3aa2","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 5
Abstract
The objective of this study was to develop a novel porous thin poly(D,L-lactide) (PLA) film as a tissue-engineering scaffold for keratinocytes used for the replacement of damaged skin. Poly(D,l-lactic acid)/poly(ethylene glycol) (PEG: Mw 6000 or 15 000) blend films were formed by a spin coating technique. The properties and structures of these blend films were investigated. PDLA/PEG (6000) blend films were modified by microfibrillar collagen after water incubation to increase hydrophilicity and improve keratinocyte adhesion. Primary keratinocytes were seeded on PLA films, cultivated for 9 d and transplanted to rats with a model skin defect wound. The wound’s healing after keratinocyte transplantation was assayed with histological and immunochemical methods. It was found that skin damage recovery was the most effective after transplantation of keratinocytes on porous PLA film modified with collagen.
期刊介绍:
The goal of the journal is to publish original research findings and critical reviews that contribute to our knowledge about the composition, properties, and performance of materials for all applications relevant to human healthcare.
Typical areas of interest include (but are not limited to):
-Synthesis/characterization of biomedical materials-
Nature-inspired synthesis/biomineralization of biomedical materials-
In vitro/in vivo performance of biomedical materials-
Biofabrication technologies/applications: 3D bioprinting, bioink development, bioassembly & biopatterning-
Microfluidic systems (including disease models): fabrication, testing & translational applications-
Tissue engineering/regenerative medicine-
Interaction of molecules/cells with materials-
Effects of biomaterials on stem cell behaviour-
Growth factors/genes/cells incorporated into biomedical materials-
Biophysical cues/biocompatibility pathways in biomedical materials performance-
Clinical applications of biomedical materials for cell therapies in disease (cancer etc)-
Nanomedicine, nanotoxicology and nanopathology-
Pharmacokinetic considerations in drug delivery systems-
Risks of contrast media in imaging systems-
Biosafety aspects of gene delivery agents-
Preclinical and clinical performance of implantable biomedical materials-
Translational and regulatory matters