{"title":"Review of using small UAV based meteorological measurements for road weather management","authors":"David Sziroczak, Daniel Rohacs, Jozsef Rohacs","doi":"10.1016/j.paerosci.2022.100859","DOIUrl":null,"url":null,"abstract":"<div><p>Weather phenomena including wind, rain, fog, storms, etc. have large influence on road transport by reducing the speed and capacity by 5–40% in moderate cases and up to 100% in case of extreme weather situations. The existing weather service systems cannot provide accurate local weather nowcasting, because of their prediction processes, and a lack of actual measured information in the atmospheric boundary layer. Technology is ready for the development and introduction of drone-based mobile automatic weather stations to support improved road weather management. This systematic review evaluates the readiness of the required technologies through surveying a wide range of papers dealing with the introduction of drone based meteorological measurements and their utilization for road weather management. It identifies the requirements of such systems, analyses the applicability of drones for weather monitoring and nowcasting, studies the required specification of drones and their instrumentations and investigates the possible realization of planned measurements. The review results show that (i) significant societal-economic value can be generated with the improvement of nowcasting and forecasting systems for road users (ii) technology is ready for the development and introduction of new road weather monitoring and management services, however UAV weather tolerance must be improved (iii) new concepts and software solutions are required for processing the measured data and rapid sharing of nowcasting information.</p></div>","PeriodicalId":54553,"journal":{"name":"Progress in Aerospace Sciences","volume":"134 ","pages":"Article 100859"},"PeriodicalIF":11.5000,"publicationDate":"2022-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0376042122000513/pdfft?md5=e0bd46e13098931b6acbf9e0b8c9bb3e&pid=1-s2.0-S0376042122000513-main.pdf","citationCount":"23","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Aerospace Sciences","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0376042122000513","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
引用次数: 23
Abstract
Weather phenomena including wind, rain, fog, storms, etc. have large influence on road transport by reducing the speed and capacity by 5–40% in moderate cases and up to 100% in case of extreme weather situations. The existing weather service systems cannot provide accurate local weather nowcasting, because of their prediction processes, and a lack of actual measured information in the atmospheric boundary layer. Technology is ready for the development and introduction of drone-based mobile automatic weather stations to support improved road weather management. This systematic review evaluates the readiness of the required technologies through surveying a wide range of papers dealing with the introduction of drone based meteorological measurements and their utilization for road weather management. It identifies the requirements of such systems, analyses the applicability of drones for weather monitoring and nowcasting, studies the required specification of drones and their instrumentations and investigates the possible realization of planned measurements. The review results show that (i) significant societal-economic value can be generated with the improvement of nowcasting and forecasting systems for road users (ii) technology is ready for the development and introduction of new road weather monitoring and management services, however UAV weather tolerance must be improved (iii) new concepts and software solutions are required for processing the measured data and rapid sharing of nowcasting information.
期刊介绍:
"Progress in Aerospace Sciences" is a prestigious international review journal focusing on research in aerospace sciences and its applications in research organizations, industry, and universities. The journal aims to appeal to a wide range of readers and provide valuable information.
The primary content of the journal consists of specially commissioned review articles. These articles serve to collate the latest advancements in the expansive field of aerospace sciences. Unlike other journals, there are no restrictions on the length of papers. Authors are encouraged to furnish specialist readers with a clear and concise summary of recent work, while also providing enough detail for general aerospace readers to stay updated on developments in fields beyond their own expertise.