{"title":"An Improved Measurement Error Model for Analyzing Unreplicated Method Comparison Data under Asymmetric Heavy-Tailed Distributions","authors":"Jeevana Duwarahan, Lakshika S. Nawarathna","doi":"10.1155/2022/3453912","DOIUrl":null,"url":null,"abstract":"Method comparison studies mainly focus on determining if the two methods of measuring a continuous variable are agreeable enough to be used interchangeably. Typically, a standard mixed-effects model uses to model the method comparison data that assume normality for both random effects and errors. However, these assumptions are frequently violated in practice due to the skewness and heavy tails. In particular, the biases of the methods may vary with the extent of measurement. Thus, we propose a methodology for method comparison data to deal with these issues in the context of the measurement error model (MEM) that assumes a skew-\n \n t\n \n (ST) distribution for the true covariates and centered Student’s \n \n t\n \n (cT) distribution for the errors with known error variances, named STcT-MEM. An expectation conditional maximization (ECM) algorithm is used to compute the maximum likelihood (ML) estimates. The simulation study is performed to validate the proposed methodology. This methodology is illustrated by analyzing gold particle data and then compared with the standard measurement error model (SMEM). The likelihood ratio (LR) test is used to identify the most appropriate model among the above models. In addition, the total deviation index (TDI) and concordance correlation coefficient (CCC) were used to check the agreement between the methods. The findings suggest that our proposed framework for analyzing unreplicated method comparison data with asymmetry and heavy tails works effectively for modest and large samples.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2022-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2022/3453912","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Method comparison studies mainly focus on determining if the two methods of measuring a continuous variable are agreeable enough to be used interchangeably. Typically, a standard mixed-effects model uses to model the method comparison data that assume normality for both random effects and errors. However, these assumptions are frequently violated in practice due to the skewness and heavy tails. In particular, the biases of the methods may vary with the extent of measurement. Thus, we propose a methodology for method comparison data to deal with these issues in the context of the measurement error model (MEM) that assumes a skew-
t
(ST) distribution for the true covariates and centered Student’s
t
(cT) distribution for the errors with known error variances, named STcT-MEM. An expectation conditional maximization (ECM) algorithm is used to compute the maximum likelihood (ML) estimates. The simulation study is performed to validate the proposed methodology. This methodology is illustrated by analyzing gold particle data and then compared with the standard measurement error model (SMEM). The likelihood ratio (LR) test is used to identify the most appropriate model among the above models. In addition, the total deviation index (TDI) and concordance correlation coefficient (CCC) were used to check the agreement between the methods. The findings suggest that our proposed framework for analyzing unreplicated method comparison data with asymmetry and heavy tails works effectively for modest and large samples.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.