Discourse Structure Extraction from Pre-Trained and Fine-Tuned Language Models in Dialogues

Chuyuan Li, Patrick Huber, Wen Xiao, M. Amblard, Chloé Braud, G. Carenini
{"title":"Discourse Structure Extraction from Pre-Trained and Fine-Tuned Language Models in Dialogues","authors":"Chuyuan Li, Patrick Huber, Wen Xiao, M. Amblard, Chloé Braud, G. Carenini","doi":"10.48550/arXiv.2302.05895","DOIUrl":null,"url":null,"abstract":"Discourse processing suffers from data sparsity, especially for dialogues. As a result, we explore approaches to infer latent discourse structures for dialogues, based on attention matrices from Pre-trained Language Models (PLMs). We investigate multiple auxiliary tasks for fine-tuning and show that the dialogue-tailored Sentence Ordering task performs best. To locate and exploit discourse information in PLMs, we propose an unsupervised and a semi-supervised method. Our proposals thereby achieve encouraging results on the STAC corpus, with F1 scores of 57.2 and 59.3 for the unsupervised and semi-supervised methods, respectively. When restricted to projective trees, our scores improved to 63.3 and 68.1.","PeriodicalId":73025,"journal":{"name":"Findings (Sydney (N.S.W.)","volume":"1 1","pages":"2517-2534"},"PeriodicalIF":0.0000,"publicationDate":"2023-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Findings (Sydney (N.S.W.)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2302.05895","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Discourse processing suffers from data sparsity, especially for dialogues. As a result, we explore approaches to infer latent discourse structures for dialogues, based on attention matrices from Pre-trained Language Models (PLMs). We investigate multiple auxiliary tasks for fine-tuning and show that the dialogue-tailored Sentence Ordering task performs best. To locate and exploit discourse information in PLMs, we propose an unsupervised and a semi-supervised method. Our proposals thereby achieve encouraging results on the STAC corpus, with F1 scores of 57.2 and 59.3 for the unsupervised and semi-supervised methods, respectively. When restricted to projective trees, our scores improved to 63.3 and 68.1.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于预训练和微调语言模型的对话语篇结构提取
语篇处理受到数据稀疏性的影响,尤其是在对话中。因此,我们探索了基于预训练语言模型的注意力矩阵来推断对话潜在话语结构的方法。我们研究了用于微调的多个辅助任务,并表明对话定制的句子排序任务表现最好。为了定位和利用PLM中的话语信息,我们提出了一种无监督和半监督的方法。因此,我们的建议在STAC语料库上取得了令人鼓舞的结果,无监督和半监督方法的F1得分分别为57.2和59.3。当仅限于投影树时,我们的得分分别提高到63.3和68.1。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
4 weeks
期刊最新文献
Exploring Pedestrian Injury Severity by Incorporating Spatial Information in Machine Learning Darkness and Death in the U.S.: Walking Distances Across the Nation by Time of Day and Time of Year Activity Reduction as Resilience Indicator: Evidence with Filomena Data The Lifestyle and Mobility Connection of Community Supported Agriculture (CSA) Users Transit Fleet Electrification Barriers, Resolutions and Costs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1