A kriging interpolation model for geographical flows

IF 4.3 1区 地球科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS International Journal of Geographical Information Science Pub Date : 2023-08-23 DOI:10.1080/13658816.2023.2248502
Yaqun Fang, T. Pei, Ci Song, Jie Chen, Xi Wang, Xiao Chen, Yaxi Liu
{"title":"A kriging interpolation model for geographical flows","authors":"Yaqun Fang, T. Pei, Ci Song, Jie Chen, Xi Wang, Xiao Chen, Yaxi Liu","doi":"10.1080/13658816.2023.2248502","DOIUrl":null,"url":null,"abstract":"Abstract The kriging model can accommodate various spatial supports and has been extensively applied in hydrology, meteorology, soil science, and other domains. With the expansion of applications, it is essential to extend the kriging model for new spatial support of high-dimensional data. Geographical flows can depict the movements of geographical objects and imply the underlying mobility patterns in geographical phenomena. However, due to the bias, sparsity, and uneven quality of flow data in the real world, research about flows remains hindered by the lack of complete flow data and effective flow interpolation methods. In this study, we design a kriging interpolation model for flows based on several flow-related concepts and the autocorrelation of flows. We also analyze the second-order stationarity and anisotropy in the flow spatial random field. To illustrate the effectiveness and applicability of our method, we conduct two case studies. The former case study compares several experiments of flow density interpolation using Beijing mobile signaling data and illustrates the conditions of applicable areas. The latter case study extends our model to other flow attributes, such as travel time uncertainty, using Beijing taxi origin-destination flow data. The results of these cases demonstrate the effectiveness and high accuracy of our model.","PeriodicalId":14162,"journal":{"name":"International Journal of Geographical Information Science","volume":"37 1","pages":"2150 - 2174"},"PeriodicalIF":4.3000,"publicationDate":"2023-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Geographical Information Science","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1080/13658816.2023.2248502","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract The kriging model can accommodate various spatial supports and has been extensively applied in hydrology, meteorology, soil science, and other domains. With the expansion of applications, it is essential to extend the kriging model for new spatial support of high-dimensional data. Geographical flows can depict the movements of geographical objects and imply the underlying mobility patterns in geographical phenomena. However, due to the bias, sparsity, and uneven quality of flow data in the real world, research about flows remains hindered by the lack of complete flow data and effective flow interpolation methods. In this study, we design a kriging interpolation model for flows based on several flow-related concepts and the autocorrelation of flows. We also analyze the second-order stationarity and anisotropy in the flow spatial random field. To illustrate the effectiveness and applicability of our method, we conduct two case studies. The former case study compares several experiments of flow density interpolation using Beijing mobile signaling data and illustrates the conditions of applicable areas. The latter case study extends our model to other flow attributes, such as travel time uncertainty, using Beijing taxi origin-destination flow data. The results of these cases demonstrate the effectiveness and high accuracy of our model.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
地理流动的克里格插值模型
摘要克里格模型可以容纳各种空间支持,在水文、气象、土壤科学等领域得到了广泛应用。随着应用程序的扩展,扩展克里格模型以获得高维数据的新空间支持是至关重要的。地理流动可以描绘地理物体的运动,并暗示地理现象中潜在的流动模式。然而,由于现实世界中流量数据的偏差、稀疏性和质量参差不齐,由于缺乏完整的流量数据和有效的流量插值方法,对流量的研究仍然受到阻碍。在这项研究中,我们基于几个与流量相关的概念和流量的自相关,设计了一个流量的克里格插值模型。我们还分析了流动空间随机场的二阶平稳性和各向异性。为了说明我们的方法的有效性和适用性,我们进行了两个案例研究。前一个案例比较了使用北京移动信号数据进行流量密度插值的几个实验,并说明了适用区域的条件。后一个案例研究使用北京出租车始发地-目的地流量数据,将我们的模型扩展到其他流量属性,如出行时间的不确定性。这些案例的结果证明了我们的模型的有效性和高精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
11.00
自引率
7.00%
发文量
81
审稿时长
9 months
期刊介绍: International Journal of Geographical Information Science provides a forum for the exchange of original ideas, approaches, methods and experiences in the rapidly growing field of geographical information science (GIScience). It is intended to interest those who research fundamental and computational issues of geographic information, as well as issues related to the design, implementation and use of geographical information for monitoring, prediction and decision making. Published research covers innovations in GIScience and novel applications of GIScience in natural resources, social systems and the built environment, as well as relevant developments in computer science, cartography, surveying, geography and engineering in both developed and developing countries.
期刊最新文献
Visual attention-guided augmented representation of geographic scenes: a case of bridge stress visualization A multi-hierarchical method to extract spatial network structures from large-scale origin-destination flow data A deep learning approach to recognizing fine-grained expressway location reference from unstructured texts in Chinese A knowledge-guided visualization framework of disaster scenes for helping the public cognize risk information A methodology to Geographic Cellular Automata model accounting for spatial heterogeneity and adaptive neighborhoods
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1