{"title":"Crop-land suitability analysis using geographic information system and remote sensing","authors":"P. Ramu, B. Sai Santosh, K. Chalapathi","doi":"10.1556/446.2022.00050","DOIUrl":null,"url":null,"abstract":"\n Food, water, and energy scarcity threaten India's future, and they must be addressed first. To meet the country's ever-increasing population needs, agricultural productivity must be expanded. For the crop-land suitability, we have studied an area of about 6,539 km2 in Vizianagaram district. The majority of the land is used for paddy agriculture (Kharif). The crop-land suitability has been evaluated based on the different parameters identified in that study area. “Remote sensing (RS)” and “geographic information system (GIS)” were combined for the crop-land suitability using nine parameters. The slope, elevation, rainfall, soil texture, lithology, groundwater, land use–land cover (LULC), TWI, and land surface temperature are the primary criteria used to determine the crop-land suitability in the Vizianagaram district (AP). Thematic maps were created using Landsat 8 images and SRTM DEM images from USGS Earth Explorer. Based on these maps and the influence of these parameters, we may assign weights to the parameters and then rank them, the Analytic Hierarchy Process (AHP) allowing us to identify which area is more suitable for good crop productivity and which is not. In this study, the soils are divided into four categories: low suitability, moderate suitability, high suitability, and extremely high suitability. The suitability index is found to be in the range of 0–55.2%, which indicates the lack of outstanding agricultural lands in the sudy region.","PeriodicalId":20837,"journal":{"name":"Progress in Agricultural Engineering Sciences","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Agricultural Engineering Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1556/446.2022.00050","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 2
Abstract
Food, water, and energy scarcity threaten India's future, and they must be addressed first. To meet the country's ever-increasing population needs, agricultural productivity must be expanded. For the crop-land suitability, we have studied an area of about 6,539 km2 in Vizianagaram district. The majority of the land is used for paddy agriculture (Kharif). The crop-land suitability has been evaluated based on the different parameters identified in that study area. “Remote sensing (RS)” and “geographic information system (GIS)” were combined for the crop-land suitability using nine parameters. The slope, elevation, rainfall, soil texture, lithology, groundwater, land use–land cover (LULC), TWI, and land surface temperature are the primary criteria used to determine the crop-land suitability in the Vizianagaram district (AP). Thematic maps were created using Landsat 8 images and SRTM DEM images from USGS Earth Explorer. Based on these maps and the influence of these parameters, we may assign weights to the parameters and then rank them, the Analytic Hierarchy Process (AHP) allowing us to identify which area is more suitable for good crop productivity and which is not. In this study, the soils are divided into four categories: low suitability, moderate suitability, high suitability, and extremely high suitability. The suitability index is found to be in the range of 0–55.2%, which indicates the lack of outstanding agricultural lands in the sudy region.
期刊介绍:
The Journal publishes original papers, review papers and preliminary communications in the field of agricultural, environmental and process engineering. The main purpose is to show new scientific results, new developments and procedures with special respect to the engineering of crop production and animal husbandry, soil and water management, precision agriculture, information technology in agriculture, advancements in instrumentation and automation, technical and safety aspects of environmental and food engineering.