Kinematics Modeling and Motion Planning of Tendon Driven Continuum Manipulators

J. Zhang, K. Lu, Junjie Yuan, J. Di, Guangpin He
{"title":"Kinematics Modeling and Motion Planning of Tendon Driven Continuum Manipulators","authors":"J. Zhang, K. Lu, Junjie Yuan, J. Di, Guangpin He","doi":"10.37965/jait.2020.0041","DOIUrl":null,"url":null,"abstract":"Continuum manipulators have important applications in the human–machine interaction fields. The kinematics, dynamics, and control issues of the continuum manipulators are rather different from a conventional rigid-link manipulator. By the aid of Lie groups theory and exponential coordinate representations, the kinematics of the continuum manipulators with piecewise constant curvatures and actuated by tendons is investigated in this paper. On the basis of differential kinematics analysis, the complete Jacobian of the continuum manipulators is derived analytically, and then a new motion planning approach, named as “dynamic coordination method” is presented for the multisegments continuum manipulators, which is a class of superredundant manipulators. The novel motion planning approach is featured by some appealing properties, and the feasibility of the modeling and the motion planning method is demonstrated by some numerical simulations.","PeriodicalId":70996,"journal":{"name":"人工智能技术学报(英文)","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"人工智能技术学报(英文)","FirstCategoryId":"1093","ListUrlMain":"https://doi.org/10.37965/jait.2020.0041","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Continuum manipulators have important applications in the human–machine interaction fields. The kinematics, dynamics, and control issues of the continuum manipulators are rather different from a conventional rigid-link manipulator. By the aid of Lie groups theory and exponential coordinate representations, the kinematics of the continuum manipulators with piecewise constant curvatures and actuated by tendons is investigated in this paper. On the basis of differential kinematics analysis, the complete Jacobian of the continuum manipulators is derived analytically, and then a new motion planning approach, named as “dynamic coordination method” is presented for the multisegments continuum manipulators, which is a class of superredundant manipulators. The novel motion planning approach is featured by some appealing properties, and the feasibility of the modeling and the motion planning method is demonstrated by some numerical simulations.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
肌腱驱动连续体机械臂的运动学建模与运动规划
连续体机械手在人机交互领域有着重要的应用。连续体机械臂的运动学、动力学和控制问题与传统的刚性连杆机械臂有很大的不同。利用李群理论和指数坐标表示,研究了具有分段常曲率、由肌腱驱动的连续体机械臂的运动学问题。在微分运动学分析的基础上,对连续体机械臂的完全雅可比矩阵进行了解析推导,并在此基础上提出了一种针对多节段连续体机械臂的运动规划新方法——“动态协调法”。该运动规划方法具有一些吸引人的特性,并通过数值仿真验证了建模和运动规划方法的可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
8.70
自引率
0.00%
发文量
0
期刊最新文献
Detection of Streaks in Astronomical Images Using Machine Learning An Optimal BDCNN ML Architecture for Car Make Model Prediction A Bio-Inspired Method For Breast Histopathology Image Classification Using Transfer Learning Convolutional Neural Networks for Automated Diagnosis of Diabetic Retinopathy in Fundus Images Automated Staging and Grading for Retinopathy of Prematurity on Indian Database
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1