A PINN Surrogate Modeling Methodology for Steady-State Integrated Thermofluid Systems Modeling

IF 1.9 Q2 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS Mathematical & Computational Applications Pub Date : 2023-03-27 DOI:10.3390/mca28020052
Kristina Laugksch, P. Rousseau, R. Laubscher
{"title":"A PINN Surrogate Modeling Methodology for Steady-State Integrated Thermofluid Systems Modeling","authors":"Kristina Laugksch, P. Rousseau, R. Laubscher","doi":"10.3390/mca28020052","DOIUrl":null,"url":null,"abstract":"Physics-informed neural networks (PINNs) were developed to overcome the limitations associated with the acquisition of large training data sets that are commonly encountered when using purely data-driven machine learning methods. This paper proposes a PINN surrogate modeling methodology for steady-state integrated thermofluid systems modeling based on the mass, energy, and momentum balance equations, combined with the relevant component characteristics and fluid property relationships. The methodology is applied to two thermofluid systems that encapsulate the important phenomena typically encountered, namely: (i) a heat exchanger network with two different fluid streams and components linked in series and parallel; and (ii) a recuperated closed Brayton cycle with various turbomachines and heat exchangers. The results generated with the PINN models were compared to benchmark solutions generated via conventional, physics-based thermofluid process models. The largest average relative errors are 0.17% and 0.93% for the heat exchanger network and Brayton cycle, respectively. It was shown that the use of a hybrid Adam-TNC optimizer requires between 180 and 690 fewer iterations during the training process, thus providing a significant computational advantage over a pure Adam optimization approach. The resulting PINN models can make predictions 75 to 88 times faster than their respective conventional process models. This highlights the potential for PINN surrogate models as a valuable engineering tool in component and system design and optimization, as well as in real-time simulation for anomaly detection, diagnosis, and forecasting.","PeriodicalId":53224,"journal":{"name":"Mathematical & Computational Applications","volume":" ","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2023-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical & Computational Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/mca28020052","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Physics-informed neural networks (PINNs) were developed to overcome the limitations associated with the acquisition of large training data sets that are commonly encountered when using purely data-driven machine learning methods. This paper proposes a PINN surrogate modeling methodology for steady-state integrated thermofluid systems modeling based on the mass, energy, and momentum balance equations, combined with the relevant component characteristics and fluid property relationships. The methodology is applied to two thermofluid systems that encapsulate the important phenomena typically encountered, namely: (i) a heat exchanger network with two different fluid streams and components linked in series and parallel; and (ii) a recuperated closed Brayton cycle with various turbomachines and heat exchangers. The results generated with the PINN models were compared to benchmark solutions generated via conventional, physics-based thermofluid process models. The largest average relative errors are 0.17% and 0.93% for the heat exchanger network and Brayton cycle, respectively. It was shown that the use of a hybrid Adam-TNC optimizer requires between 180 and 690 fewer iterations during the training process, thus providing a significant computational advantage over a pure Adam optimization approach. The resulting PINN models can make predictions 75 to 88 times faster than their respective conventional process models. This highlights the potential for PINN surrogate models as a valuable engineering tool in component and system design and optimization, as well as in real-time simulation for anomaly detection, diagnosis, and forecasting.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种用于稳态集成热流体系统建模的PINN代理建模方法
物理信息神经网络(pinn)的开发是为了克服在使用纯数据驱动的机器学习方法时通常遇到的与获取大型训练数据集相关的限制。基于质量、能量和动量平衡方程,结合相关组分特性和流体性质关系,提出了一种用于稳态集成热流体系统建模的PINN代理建模方法。该方法应用于两个热流体系统,它们包含了通常遇到的重要现象,即:(i)具有两种不同流体流和组件串联和并联的热交换器网络;(ii)带有各种涡轮机器和热交换器的再生封闭布雷顿循环。将PINN模型生成的结果与传统的基于物理的热流体过程模型生成的基准解决方案进行了比较。换热器网络和布雷顿循环的平均相对误差最大,分别为0.17%和0.93%。结果表明,使用混合Adam- tnc优化器在训练过程中需要减少180到690次迭代,因此与纯Adam优化方法相比,提供了显着的计算优势。由此产生的PINN模型的预测速度比各自的传统过程模型快75到88倍。这突出了PINN代理模型作为组件和系统设计和优化以及异常检测、诊断和预测的实时仿真中有价值的工程工具的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Mathematical & Computational Applications
Mathematical & Computational Applications MATHEMATICS, INTERDISCIPLINARY APPLICATIONS-
自引率
10.50%
发文量
86
审稿时长
12 weeks
期刊介绍: Mathematical and Computational Applications (MCA) is devoted to original research in the field of engineering, natural sciences or social sciences where mathematical and/or computational techniques are necessary for solving specific problems. The aim of the journal is to provide a medium by which a wide range of experience can be exchanged among researchers from diverse fields such as engineering (electrical, mechanical, civil, industrial, aeronautical, nuclear etc.), natural sciences (physics, mathematics, chemistry, biology etc.) or social sciences (administrative sciences, economics, political sciences etc.). The papers may be theoretical where mathematics is used in a nontrivial way or computational or combination of both. Each paper submitted will be reviewed and only papers of highest quality that contain original ideas and research will be published. Papers containing only experimental techniques and abstract mathematics without any sign of application are discouraged.
期刊最新文献
Asymptotic Behavior of Solutions to a Nonlinear Swelling Soil System with Time Delay and Variable Exponents Exploring the Potential of Mixed Fourier Series in Signal Processing Applications Using One-Dimensional Smooth Closed-Form Functions with Compact Support: A Comprehensive Tutorial Conservation Laws and Symmetry Reductions of the Hunter–Saxton Equation via the Double Reduction Method FE2 Computations with Deep Neural Networks: Algorithmic Structure, Data Generation, and Implementation A Computational Fluid Dynamics-Based Model for Assessing Rupture Risk in Cerebral Arteries with Varying Aneurysm Sizes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1