Ok Kyu Park, Taewan Kim, M. Heo, S. Park, Se Woong Lee, Hyunmin Cho, Sang‐il Kim
{"title":"Electrical, Thermal, and Thermoelectric Transport Properties of Co-Doped n-type Cu0.008Bi2Te2.6Se0.4 Polycrystalline Alloys","authors":"Ok Kyu Park, Taewan Kim, M. Heo, S. Park, Se Woong Lee, Hyunmin Cho, Sang‐il Kim","doi":"10.3365/kjmm.2023.61.3.206","DOIUrl":null,"url":null,"abstract":"Bi<sub>2</sub>Te<sub>3</sub>-based alloys have been extensively studied as thermoelectric materials near room temperature. In this study, the electrical, thermal, and thermoelectric transport properties of a series of Co-doped <i>n</i>-type Cu<sub>0.008</sub>Bi<sub>2</sub>Te<sub>2.6</sub>Se<sub>0.4</sub> polycrystalline alloys (Cu<sub>0.008</sub>Bi<sub>2−x</sub>Co<sub>x</sub>Te<sub>2.6</sub>Se<sub>0.4</sub>, <i>x</i> = 0, 0.03, 0.06, 0.09 and 0.12) are investigated. The electrical conductivity of the Cu<sub>0.008</sub>Bi<sub>1.97</sub>Co<sub>0.03</sub>Te<sub>2.6</sub>Se<sub>0.4</sub> (<i>x</i> = 0.03) sample was significantly enhanced, by 34%, to 1199 S/cm compared to 793 S/cm of the pristine Cu<sub>0.008</sub>Bi<sub>2</sub>Te<sub>2.6</sub>Se<sub>0.4</sub> (<i>x</i> = 0) sample at 300 K, and gradually decreased to 906 S/cm for <i>x</i> = 0.12 upon further doping. Power factors of the Co-doped samples decreased compared to the 3.26 mW/mK<sup>2</sup> of the pristine Cu<sub>0.008</sub>Bi<sub>2</sub>Te<sub>2.6</sub>Se<sub>0.4</sub> sample at 300 K. Meanwhile, the power factor of the Cu<sub>0.008</sub>Bi<sub>1.97</sub>Co<sub>0.03</sub>Te<sub>2.6</sub>Se<sub>0.4</sub> (<i>x</i> = 0.03) sample became higher at 520 K. The lattice thermal conductivities of the Co-doped samples decreased due to additional point defect phonon scattering by the Co dopant. Consequently, the <i>zT</i> for the Cu<sub>0.008</sub>Bi<sub>1.97</sub>Co<sub>0.03</sub>Te<sub>2.6</sub>Se<sub>0.4</sub> alloy at 520 K was 0.83, which is approximately 15% larger than that of pristine Cu<sub>0.008</sub>Bi<sub>2</sub>Te<sub>2.6</sub>Se<sub>0.4</sub>, while the <i>zT</i> of the Cu doped samples at 300 K was smaller than that of the pristine Cu<sub>0.008</sub>Bi<sub>2</sub>Te<sub>2.6</sub>Se<sub>0.4</sub> sample. Electrical transport properties of the Co-doped Cu<sub>0.008</sub>Bi<sub>2−x</sub>Co<sub>x</sub>Te<sub>2.6</sub>Se<sub>0.4</sub> samples were analyzed by experimental phenomenological parameters, including the density-of-state, effective mass, weighted mobility, and quality factor.","PeriodicalId":17894,"journal":{"name":"Korean Journal of Metals and Materials","volume":" ","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2023-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Korean Journal of Metals and Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3365/kjmm.2023.61.3.206","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1
Abstract
Bi2Te3-based alloys have been extensively studied as thermoelectric materials near room temperature. In this study, the electrical, thermal, and thermoelectric transport properties of a series of Co-doped n-type Cu0.008Bi2Te2.6Se0.4 polycrystalline alloys (Cu0.008Bi2−xCoxTe2.6Se0.4, x = 0, 0.03, 0.06, 0.09 and 0.12) are investigated. The electrical conductivity of the Cu0.008Bi1.97Co0.03Te2.6Se0.4 (x = 0.03) sample was significantly enhanced, by 34%, to 1199 S/cm compared to 793 S/cm of the pristine Cu0.008Bi2Te2.6Se0.4 (x = 0) sample at 300 K, and gradually decreased to 906 S/cm for x = 0.12 upon further doping. Power factors of the Co-doped samples decreased compared to the 3.26 mW/mK2 of the pristine Cu0.008Bi2Te2.6Se0.4 sample at 300 K. Meanwhile, the power factor of the Cu0.008Bi1.97Co0.03Te2.6Se0.4 (x = 0.03) sample became higher at 520 K. The lattice thermal conductivities of the Co-doped samples decreased due to additional point defect phonon scattering by the Co dopant. Consequently, the zT for the Cu0.008Bi1.97Co0.03Te2.6Se0.4 alloy at 520 K was 0.83, which is approximately 15% larger than that of pristine Cu0.008Bi2Te2.6Se0.4, while the zT of the Cu doped samples at 300 K was smaller than that of the pristine Cu0.008Bi2Te2.6Se0.4 sample. Electrical transport properties of the Co-doped Cu0.008Bi2−xCoxTe2.6Se0.4 samples were analyzed by experimental phenomenological parameters, including the density-of-state, effective mass, weighted mobility, and quality factor.
期刊介绍:
The Korean Journal of Metals and Materials is a representative Korean-language journal of the Korean Institute of Metals and Materials (KIM); it publishes domestic and foreign academic papers related to metals and materials, in abroad range of fields from metals and materials to nano-materials, biomaterials, functional materials, energy materials, and new materials, and its official ISO designation is Korean J. Met. Mater.