Enhanced thermoelectric performance of SnSe by controlled vacancy population

IF 13.4 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Nano Convergence Pub Date : 2023-07-07 DOI:10.1186/s40580-023-00381-7
Ji-Eun Lee, Kyoo Kim, Van Quang Nguyen, Jinwoong Hwang, Jonathan D. Denlinger, Byung Il Min, Sunglae Cho, Hyejin Ryu, Choongyu Hwang, Sung-Kwan Mo
{"title":"Enhanced thermoelectric performance of SnSe by controlled vacancy population","authors":"Ji-Eun Lee,&nbsp;Kyoo Kim,&nbsp;Van Quang Nguyen,&nbsp;Jinwoong Hwang,&nbsp;Jonathan D. Denlinger,&nbsp;Byung Il Min,&nbsp;Sunglae Cho,&nbsp;Hyejin Ryu,&nbsp;Choongyu Hwang,&nbsp;Sung-Kwan Mo","doi":"10.1186/s40580-023-00381-7","DOIUrl":null,"url":null,"abstract":"<div><p>The thermoelectric performance of SnSe strongly depends on its low-energy electron band structure that provides high density of states in a narrow energy window due to the multi-valley valence band maximum (VBM). Angle-resolved photoemission spectroscopy measurements, in conjunction with first-principles calculations, reveal that the binding energy of the VBM of SnSe is tuned by the population of Sn vacancy, which is determined by the cooling rate during the sample growth. The VBM shift follows precisely the behavior of the thermoelectric power factor, while the effective mass is barely modified upon changing the population of Sn vacancies. These findings indicate that the low-energy electron band structure is closely correlated with the high thermoelectric performance of hole-doped SnSe, providing a viable route toward engineering the intrinsic defect-induced thermoelectric performance via the sample growth condition without an additional <i>ex-situ</i> process.</p><h3>Graphical Abstract</h3>\n <figure><div><div><div><picture><source><img></source></picture></div></div></div></figure>\n </div>","PeriodicalId":712,"journal":{"name":"Nano Convergence","volume":null,"pages":null},"PeriodicalIF":13.4000,"publicationDate":"2023-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://nanoconvergencejournal.springeropen.com/counter/pdf/10.1186/s40580-023-00381-7","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Convergence","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1186/s40580-023-00381-7","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1

Abstract

The thermoelectric performance of SnSe strongly depends on its low-energy electron band structure that provides high density of states in a narrow energy window due to the multi-valley valence band maximum (VBM). Angle-resolved photoemission spectroscopy measurements, in conjunction with first-principles calculations, reveal that the binding energy of the VBM of SnSe is tuned by the population of Sn vacancy, which is determined by the cooling rate during the sample growth. The VBM shift follows precisely the behavior of the thermoelectric power factor, while the effective mass is barely modified upon changing the population of Sn vacancies. These findings indicate that the low-energy electron band structure is closely correlated with the high thermoelectric performance of hole-doped SnSe, providing a viable route toward engineering the intrinsic defect-induced thermoelectric performance via the sample growth condition without an additional ex-situ process.

Graphical Abstract

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
控制空位族数提高SnSe热电性能
SnSe的热电性能在很大程度上取决于其低能电子带结构,由于多谷价带最大值(VBM),它在窄能窗内提供了高密度的态。角分辨光发射光谱测量结合第一性原理计算表明,SnSe的VBM的结合能是由Sn空位的占比调节的,而Sn空位的占比是由样品生长过程中的冷却速率决定的。VBM位移精确地遵循热电功率因子的行为,而有效质量几乎没有改变Sn空位的填充。这些发现表明,低能电子带结构与空穴掺杂SnSe的高热电性能密切相关,为通过样品生长条件来设计本征缺陷引起的热电性能提供了一条可行的途径,而无需额外的非原位工艺。图形抽象
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Nano Convergence
Nano Convergence Engineering-General Engineering
CiteScore
15.90
自引率
2.60%
发文量
50
审稿时长
13 weeks
期刊介绍: Nano Convergence is an internationally recognized, peer-reviewed, and interdisciplinary journal designed to foster effective communication among scientists spanning diverse research areas closely aligned with nanoscience and nanotechnology. Dedicated to encouraging the convergence of technologies across the nano- to microscopic scale, the journal aims to unveil novel scientific domains and cultivate fresh research prospects. Operating on a single-blind peer-review system, Nano Convergence ensures transparency in the review process, with reviewers cognizant of authors' names and affiliations while maintaining anonymity in the feedback provided to authors.
期刊最新文献
Investigating composite electrode materials of metal oxides for advanced energy storage applications. Unveiling the distinctive mechanical and thermal properties of γ-GeSe Bacteria extracellular vesicle as nanopharmaceuticals for versatile biomedical potential Correction: 3D-printed wound dressing platform for protein administration based on alginate and zinc oxide tetrapods Monodispersed mesoscopic star-shaped gold particles via silver-ion-assisted multi-directional growth for highly sensitive SERS-active substrates
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1