The influence of virtual environment on thermal perception: physical reaction and subjective thermal perception on outdoor scenarios in virtual reality
{"title":"The influence of virtual environment on thermal perception: physical reaction and subjective thermal perception on outdoor scenarios in virtual reality","authors":"Chunya Wu, Jinyuan Cui, Xiaowan Xu, Dexuan Song","doi":"10.1007/s00484-023-02495-3","DOIUrl":null,"url":null,"abstract":"<div><p>Positive thermal perception can affect users’ climate-controlling behavior, indirectly reducing a building’s operational carbon emissions. Studies show that some visual elements, such as window sizes and light colors, can influence thermal perception. However, until recently there has been little interest in the interaction of thermal perception and outdoor visual scenarios or natural elements like water or trees, and little quantitative evidence has been found associating visual natural elements and thermal comfort. This experiment explores and quantifies the extent to which visual scenarios outdoors affect thermal perception. The experiment used a double-blind clinical trial. All tests were done in a stable laboratory environment to eliminate temperature changes, and scenarios were shown through a virtual reality (VR) headset. Forty-three participants were divided into three groups randomly, separately watched VR-outdoor scenarios with natural elements, VR-indoor scenarios, and a control scenario of the real laboratory, then finished a subjective questionnaire conducted to evaluate their thermal, environmental, and overall perceptions while their physical data (heart rate, blood pressure, pulse) was real-time recorded. Results show that visual scenarios could significantly influence thermal perception (Cohen’s <i>d</i> between groups > 0.8). Significant positive correlations were found between key thermal perception index, thermal comfort, and visual perception indexes including visual comfort, pleasantness, and relaxation (all PCCs ≤ 0.01). Outdoor scenarios, with better visual perception, rank higher average scores (M ± SD = 1.0 ± 0.7) in thermal comfort than indoor groups (average M ± SD = 0.3 ± 1.0) while the physical environment remains unchanged. This connection between thermal and environmental perception can be used in building design. By being visually exposed to pleasing outdoor environments, the positive thermal perception will increase, and thus reduce building energy consumption. Designing positive visual environments with outdoor natural elements is not only a requirement for health but also a feasible path toward a sustainable net-zero future.</p></div>","PeriodicalId":588,"journal":{"name":"International Journal of Biometeorology","volume":"67 8","pages":"1291 - 1301"},"PeriodicalIF":3.0000,"publicationDate":"2023-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00484-023-02495-3.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Biometeorology","FirstCategoryId":"89","ListUrlMain":"https://link.springer.com/article/10.1007/s00484-023-02495-3","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
Positive thermal perception can affect users’ climate-controlling behavior, indirectly reducing a building’s operational carbon emissions. Studies show that some visual elements, such as window sizes and light colors, can influence thermal perception. However, until recently there has been little interest in the interaction of thermal perception and outdoor visual scenarios or natural elements like water or trees, and little quantitative evidence has been found associating visual natural elements and thermal comfort. This experiment explores and quantifies the extent to which visual scenarios outdoors affect thermal perception. The experiment used a double-blind clinical trial. All tests were done in a stable laboratory environment to eliminate temperature changes, and scenarios were shown through a virtual reality (VR) headset. Forty-three participants were divided into three groups randomly, separately watched VR-outdoor scenarios with natural elements, VR-indoor scenarios, and a control scenario of the real laboratory, then finished a subjective questionnaire conducted to evaluate their thermal, environmental, and overall perceptions while their physical data (heart rate, blood pressure, pulse) was real-time recorded. Results show that visual scenarios could significantly influence thermal perception (Cohen’s d between groups > 0.8). Significant positive correlations were found between key thermal perception index, thermal comfort, and visual perception indexes including visual comfort, pleasantness, and relaxation (all PCCs ≤ 0.01). Outdoor scenarios, with better visual perception, rank higher average scores (M ± SD = 1.0 ± 0.7) in thermal comfort than indoor groups (average M ± SD = 0.3 ± 1.0) while the physical environment remains unchanged. This connection between thermal and environmental perception can be used in building design. By being visually exposed to pleasing outdoor environments, the positive thermal perception will increase, and thus reduce building energy consumption. Designing positive visual environments with outdoor natural elements is not only a requirement for health but also a feasible path toward a sustainable net-zero future.
期刊介绍:
The Journal publishes original research papers, review articles and short communications on studies examining the interactions between living organisms and factors of the natural and artificial atmospheric environment.
Living organisms extend from single cell organisms, to plants and animals, including humans. The atmospheric environment includes climate and weather, electromagnetic radiation, and chemical and biological pollutants. The journal embraces basic and applied research and practical aspects such as living conditions, agriculture, forestry, and health.
The journal is published for the International Society of Biometeorology, and most membership categories include a subscription to the Journal.