{"title":"Grouping Preventive Maintenance Strategy of Flexible Manufacturing Systems and Its Optimization Based on Reliability and Cost","authors":"Yanhu Pei, Zhifeng Liu, Jingjing Xu, Baobao Qi, Qiang Cheng","doi":"10.3390/machines11010074","DOIUrl":null,"url":null,"abstract":"A flexible manufacturing system (FMS) improves productivity and makes it more efficient. Maintaining reliability levels and reducing costs through proper maintenance strategies are key problems for the development and application of a FMS. This paper proposes a grouping preventive maintenance strategy of a FMS with optimized parameters by considering both reliability and cost. In this work, a three-layer evaluation index system is first presented to accurately estimate the reliability of the FMS; index weights of each layer were obtained by reliability importance modeling and analysis, considering maintenance strategies. An element-grouping preventive strategy is proposed based on an influencing analysis, and a parameter optimization problem (considering reliability and maintenance costs) was established. In this strategy, three maintenance methods are presented for the elements, including low-level maintenance with a large period, low-level maintenance with a small period, as well as the combination of low-level maintenance with a small period and high-level maintenance with a large period; the effects of reliability improvement of the elements on the subsystem’s reliability were analyzed to provide evidence for element grouping. Finally, the proposed method was applied to a box-part finishing FMS; the results indicate that this method can effectively reduce maintenance costs on the premise of satisfying the reliability requirements.","PeriodicalId":48519,"journal":{"name":"Machines","volume":" ","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2023-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Machines","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/machines11010074","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 2
Abstract
A flexible manufacturing system (FMS) improves productivity and makes it more efficient. Maintaining reliability levels and reducing costs through proper maintenance strategies are key problems for the development and application of a FMS. This paper proposes a grouping preventive maintenance strategy of a FMS with optimized parameters by considering both reliability and cost. In this work, a three-layer evaluation index system is first presented to accurately estimate the reliability of the FMS; index weights of each layer were obtained by reliability importance modeling and analysis, considering maintenance strategies. An element-grouping preventive strategy is proposed based on an influencing analysis, and a parameter optimization problem (considering reliability and maintenance costs) was established. In this strategy, three maintenance methods are presented for the elements, including low-level maintenance with a large period, low-level maintenance with a small period, as well as the combination of low-level maintenance with a small period and high-level maintenance with a large period; the effects of reliability improvement of the elements on the subsystem’s reliability were analyzed to provide evidence for element grouping. Finally, the proposed method was applied to a box-part finishing FMS; the results indicate that this method can effectively reduce maintenance costs on the premise of satisfying the reliability requirements.
期刊介绍:
Machines (ISSN 2075-1702) is an international, peer-reviewed journal on machinery and engineering. It publishes research articles, reviews, short communications and letters. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. Full experimental and/or methodical details must be provided. There are, in addition, unique features of this journal: *manuscripts regarding research proposals and research ideas will be particularly welcomed *electronic files or software regarding the full details of the calculation and experimental procedure - if unable to be published in a normal way - can be deposited as supplementary material Subject Areas: applications of automation, systems and control engineering, electronic engineering, mechanical engineering, computer engineering, mechatronics, robotics, industrial design, human-machine-interfaces, mechanical systems, machines and related components, machine vision, history of technology and industrial revolution, turbo machinery, machine diagnostics and prognostics (condition monitoring), machine design.