Experimental study of the relationship between the vibro-acoustic parameters of the grinding process and the macro-roughness of the treated surface

IF 0.4 Q4 METALLURGY & METALLURGICAL ENGINEERING Obrabotka Metallov-Metal Working and Material Science Pub Date : 2021-09-15 DOI:10.17212/1994-6309-2021-23.3-6-19
D. Ardashev, A. Zhukov
{"title":"Experimental study of the relationship between the vibro-acoustic parameters of the grinding process and the macro-roughness of the treated surface","authors":"D. Ardashev, A. Zhukov","doi":"10.17212/1994-6309-2021-23.3-6-19","DOIUrl":null,"url":null,"abstract":"Introduction. To assess the current state of the technological system (TS) during grinding, it is preferable to use indirect criteria. Such approaches, in contrast to direct measurement methods, can be carried out without interrupting the production process. The main parameters used in the indirect assessment of the state of the cutting tool are the state of the workpiece (before and after processing), thermal and electrical characteristics of the cutting zone, vibroacoustic vibrations of the process, and force measurements. The work is devoted to the study of the acoustic parameters of grinding as a sufficiently informative and least resource-intensive characteristic. The relevance of the development of methods for assessing the state of the vehicle based on sound and topographic characteristics has many aspects, the main of which are applicability in grinding control, predicting the state of the cutting tool and planning the operations of the technological process. The aim of the work is to develop a mathematical model of the dependence of the vibroacoustic parameters of the external circular plunge-cut grinding process on the macro-roughness of the polished sample. The development of such a model is a necessary step in the design of a methodology for predicting the state of a tool. Accordingly, the subject of work is presented by two parameters simultaneously – the sound level arising in the process of grinding and the deviation of the surface shape of the ground images from cylindricality. The research methods used to achieve the designated aim were following: an experiment to study the sound phenomena accompanying round external plunge-cut grinding; measurement of macro-roughness of the surface of the samples, subjected to processing, using a coordinate measuring machine; correlation and regression analysis to obtain mathematical dependencies. Results and discussion. Two particular multiple linear regression models are obtained that describe the effect of the infeed rate and the operating time of the grinding wheel on the sound level during grinding and on deviations from the cylindricality of the processed samples. On the basis of particulars, a general model is developed that establishes the relationship between the sound characteristic and the macro-roughness index of the treated surface. It is shown that the sound characteristics (for example, the sound level) can be used as an indirect indicator of the current state of the vehicle, which makes it possible to assess the level of vibrations and, accordingly, to predict the quality of products.","PeriodicalId":42889,"journal":{"name":"Obrabotka Metallov-Metal Working and Material Science","volume":" ","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2021-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Obrabotka Metallov-Metal Working and Material Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17212/1994-6309-2021-23.3-6-19","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

Introduction. To assess the current state of the technological system (TS) during grinding, it is preferable to use indirect criteria. Such approaches, in contrast to direct measurement methods, can be carried out without interrupting the production process. The main parameters used in the indirect assessment of the state of the cutting tool are the state of the workpiece (before and after processing), thermal and electrical characteristics of the cutting zone, vibroacoustic vibrations of the process, and force measurements. The work is devoted to the study of the acoustic parameters of grinding as a sufficiently informative and least resource-intensive characteristic. The relevance of the development of methods for assessing the state of the vehicle based on sound and topographic characteristics has many aspects, the main of which are applicability in grinding control, predicting the state of the cutting tool and planning the operations of the technological process. The aim of the work is to develop a mathematical model of the dependence of the vibroacoustic parameters of the external circular plunge-cut grinding process on the macro-roughness of the polished sample. The development of such a model is a necessary step in the design of a methodology for predicting the state of a tool. Accordingly, the subject of work is presented by two parameters simultaneously – the sound level arising in the process of grinding and the deviation of the surface shape of the ground images from cylindricality. The research methods used to achieve the designated aim were following: an experiment to study the sound phenomena accompanying round external plunge-cut grinding; measurement of macro-roughness of the surface of the samples, subjected to processing, using a coordinate measuring machine; correlation and regression analysis to obtain mathematical dependencies. Results and discussion. Two particular multiple linear regression models are obtained that describe the effect of the infeed rate and the operating time of the grinding wheel on the sound level during grinding and on deviations from the cylindricality of the processed samples. On the basis of particulars, a general model is developed that establishes the relationship between the sound characteristic and the macro-roughness index of the treated surface. It is shown that the sound characteristics (for example, the sound level) can be used as an indirect indicator of the current state of the vehicle, which makes it possible to assess the level of vibrations and, accordingly, to predict the quality of products.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
磨削过程振动声参数与被加工表面宏观粗糙度关系的实验研究
介绍为了评估研磨过程中技术系统(TS)的当前状态,最好使用间接标准。与直接测量方法相比,这种方法可以在不中断生产过程的情况下进行。用于间接评估切削工具状态的主要参数是工件状态(加工前后)、切削区的热和电特性、加工过程的声振动和力测量。这项工作致力于研究研磨的声学参数,将其作为一种信息量充足、资源密集度最低的特性。开发基于声音和地形特征评估车辆状态的方法有很多方面的相关性,主要是在磨削控制、预测刀具状态和规划工艺过程操作方面的适用性。本工作的目的是建立外圆切入磨削过程的振动声学参数对抛光样品宏观粗糙度的依赖性的数学模型。开发这样的模型是设计预测工具状态的方法的必要步骤。因此,工作主题同时由两个参数表示——研磨过程中产生的声级和研磨图像的表面形状与圆柱度的偏差。为达到指定目的,采用了以下研究方法:实验研究圆形外插切削磨削的声现象;使用坐标测量机测量经过处理的样品表面的宏观粗糙度;相关和回归分析,以获得数学相关性。结果和讨论。获得了两个特定的多元线性回归模型,它们描述了砂轮的进给速率和操作时间对研磨过程中的声级以及对加工样品的圆柱度偏差的影响。在此基础上,建立了一个通用模型,建立了处理表面的声音特性与宏观粗糙度指数之间的关系。结果表明,声音特性(例如,声音水平)可以用作车辆当前状态的间接指标,这使得评估振动水平并相应地预测产品质量成为可能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Obrabotka Metallov-Metal Working and Material Science
Obrabotka Metallov-Metal Working and Material Science METALLURGY & METALLURGICAL ENGINEERING-
CiteScore
1.10
自引率
50.00%
发文量
26
期刊最新文献
Free vibration and mechanical behavior of treated woven jute polymer composite Analysis of mechanical behavior and free vibration characteristics of treated Saccharum munja fiber polymer composite Synthesis of Ti–Fe intermetallic compounds from elemental powders mixtures The concept of microsimulation of processes of joining dissimilar materials by plastic deformation Experimental studies of high-speed grinding rails modes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1