Integrity and crack resistance of hybrid polypropylene fiber reinforced cemented soil

IF 2.2 4区 工程技术 Q1 MATERIALS SCIENCE, TEXTILES Journal of Engineered Fibers and Fabrics Pub Date : 2022-01-01 DOI:10.1177/15589250211068428
Jun Zhang, Wei Xu, Peiwei Gao, L. Su, Bai Kun, Li Yueyuan, Yang Bohan
{"title":"Integrity and crack resistance of hybrid polypropylene fiber reinforced cemented soil","authors":"Jun Zhang, Wei Xu, Peiwei Gao, L. Su, Bai Kun, Li Yueyuan, Yang Bohan","doi":"10.1177/15589250211068428","DOIUrl":null,"url":null,"abstract":"Cement is commonly used in the rapid construction of emergency airports; however, cemented soils have issues with integrity and crack resistance. For example, cemented soils can crack easily, and overall stability is insufficient. To address these problems, cemented soil is reinforced with hybrid polypropylene fiber, and the anti-flying property, anti-wear property, and crack resistance of polypropylene fiber reinforced cemented soil with varying fiber lengths, fiber contents, and fiber combinations are examined through flying tests, wear tests, and crack tests. Results show that the reinforcement of fiber can significantly improve the anti-flying property, anti-wear property, and crack resistance of cemented soil. The content and fiber length have a great impact on properties of fiber reinforced cemented soil. The ideal length and content of fine polypropylene fiber are 12 mm and 0.3%, respectively. The ideal combination of hybrid polypropylene fiber reinforced cemented soil is 0.3% coarse polypropylene fiber with the length of 38 mm and 0.3% fine polypropylene fiber with the length of 12 mm. In addition, hybrid polypropylene fiber reinforced cemented soil mechanical properties exceed those of single polypropylene fiber reinforced cemented soil.","PeriodicalId":15718,"journal":{"name":"Journal of Engineered Fibers and Fabrics","volume":" ","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Engineered Fibers and Fabrics","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1177/15589250211068428","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, TEXTILES","Score":null,"Total":0}
引用次数: 4

Abstract

Cement is commonly used in the rapid construction of emergency airports; however, cemented soils have issues with integrity and crack resistance. For example, cemented soils can crack easily, and overall stability is insufficient. To address these problems, cemented soil is reinforced with hybrid polypropylene fiber, and the anti-flying property, anti-wear property, and crack resistance of polypropylene fiber reinforced cemented soil with varying fiber lengths, fiber contents, and fiber combinations are examined through flying tests, wear tests, and crack tests. Results show that the reinforcement of fiber can significantly improve the anti-flying property, anti-wear property, and crack resistance of cemented soil. The content and fiber length have a great impact on properties of fiber reinforced cemented soil. The ideal length and content of fine polypropylene fiber are 12 mm and 0.3%, respectively. The ideal combination of hybrid polypropylene fiber reinforced cemented soil is 0.3% coarse polypropylene fiber with the length of 38 mm and 0.3% fine polypropylene fiber with the length of 12 mm. In addition, hybrid polypropylene fiber reinforced cemented soil mechanical properties exceed those of single polypropylene fiber reinforced cemented soil.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
混杂聚丙烯纤维增强水泥土的完整性和抗裂性
水泥通常用于应急机场的快速建设;然而,胶结土在完整性和抗裂性方面存在问题。例如,胶结土很容易破裂,整体稳定性不足。为了解决这些问题,用混合聚丙烯纤维加固水泥土,并通过飞行试验、磨损试验和裂缝试验,测试了不同纤维长度、纤维含量和纤维组合的聚丙烯纤维加固的水泥土的抗飞性能、耐磨性能和抗裂性。结果表明,纤维增强能显著提高水泥土的抗飞性、耐磨性和抗裂性。纤维含量和纤维长度对纤维增强水泥土的性能有很大影响。聚丙烯细纤维的理想长度和含量为12 mm和0.3%。混合聚丙烯纤维增强水泥土的理想组合为0.3%粗聚丙烯纤维,长度为38 mm和0.3%细聚丙烯纤维,长度为12 此外,混合聚丙烯纤维增强水泥土的力学性能超过了单一聚丙烯纤维增强的水泥土。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Engineered Fibers and Fabrics
Journal of Engineered Fibers and Fabrics 工程技术-材料科学:纺织
CiteScore
5.00
自引率
6.90%
发文量
41
审稿时长
4 months
期刊介绍: Journal of Engineered Fibers and Fabrics is a peer-reviewed, open access journal which aims to facilitate the rapid and wide dissemination of research in the engineering of textiles, clothing and fiber based structures.
期刊最新文献
Analysis and modeling for the dynamics of the nipper mechanism considering jaw’s impacts Effect of sizing agents on tensile properties of carbon fiber filament wound structures Research on the function of single jersey based on the 3D channel structure Study on thermal comfort of aloe viscose seamless knits Effects of inter-yarn friction on responses of woven fabrics with different weaves to a low-velocity impact
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1