Advanced direct extrusion process with real-time controllable extrusion parameters for microstructure optimization of magnesium alloys

IF 2.6 3区 材料科学 Q2 ENGINEERING, MANUFACTURING International Journal of Material Forming Pub Date : 2023-06-07 DOI:10.1007/s12289-023-01758-z
Leire Elorza Azpiazu, Aritz Egea, Dietmar Letzig, Changwan Ha
{"title":"Advanced direct extrusion process with real-time controllable extrusion parameters for microstructure optimization of magnesium alloys","authors":"Leire Elorza Azpiazu,&nbsp;Aritz Egea,&nbsp;Dietmar Letzig,&nbsp;Changwan Ha","doi":"10.1007/s12289-023-01758-z","DOIUrl":null,"url":null,"abstract":"<div><p>The extrusion speed and deformation temperature are important factors affecting the microstructure development during the deformation. Microstructure development plays a crucial role in the performance of the mechanical properties of materials. In direct extrusion, the homogeneous evolution of the microstructure in the length of the extruded bar could be affected due to its non-isothermal exit temperature evolution. Thus, a new set-up is suggested with real-time controllable speed and temperature to characterize the influence of temperature on the microstructure and obtain its homogeneous development for the magnesium alloy. During the extrusion, the temperature of the extruded bar is evaluated by using the infra-red camera, and the extrusion speed is simultaneously controlled in real-time depending on the temperature difference between a set temperature reference and the one obtained from the infra-red camera. This suggested set-up of extrusion is evaluated in terms of the microstructure and temperature evolution of the extruded bar.</p></div>","PeriodicalId":591,"journal":{"name":"International Journal of Material Forming","volume":"16 4","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2023-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s12289-023-01758-z.pdf","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Material Forming","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s12289-023-01758-z","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 1

Abstract

The extrusion speed and deformation temperature are important factors affecting the microstructure development during the deformation. Microstructure development plays a crucial role in the performance of the mechanical properties of materials. In direct extrusion, the homogeneous evolution of the microstructure in the length of the extruded bar could be affected due to its non-isothermal exit temperature evolution. Thus, a new set-up is suggested with real-time controllable speed and temperature to characterize the influence of temperature on the microstructure and obtain its homogeneous development for the magnesium alloy. During the extrusion, the temperature of the extruded bar is evaluated by using the infra-red camera, and the extrusion speed is simultaneously controlled in real-time depending on the temperature difference between a set temperature reference and the one obtained from the infra-red camera. This suggested set-up of extrusion is evaluated in terms of the microstructure and temperature evolution of the extruded bar.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
先进的直接挤压工艺,实时控制挤压参数,优化镁合金微观组织
挤压速度和变形温度是影响变形过程中组织发展的重要因素。微观组织的发展对材料的力学性能起着至关重要的作用。在直接挤压的情况下,由于出口温度的非等温演变,会影响挤压杆长组织的均匀演变。为此,提出了一种实时控制速度和温度的新方法来表征温度对镁合金微观组织的影响,从而获得镁合金微观组织的均匀发展。在挤压过程中,利用红外摄像机对挤压棒的温度进行评估,并根据设定的参考温度与红外摄像机测得的温度之间的温差,实时控制挤压速度。根据挤压棒的微观结构和温度演变来评估这种建议的挤压设置。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
International Journal of Material Forming
International Journal of Material Forming ENGINEERING, MANUFACTURING-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
5.10
自引率
4.20%
发文量
76
审稿时长
>12 weeks
期刊介绍: The Journal publishes and disseminates original research in the field of material forming. The research should constitute major achievements in the understanding, modeling or simulation of material forming processes. In this respect ‘forming’ implies a deliberate deformation of material. The journal establishes a platform of communication between engineers and scientists, covering all forming processes, including sheet forming, bulk forming, powder forming, forming in near-melt conditions (injection moulding, thixoforming, film blowing etc.), micro-forming, hydro-forming, thermo-forming, incremental forming etc. Other manufacturing technologies like machining and cutting can be included if the focus of the work is on plastic deformations. All materials (metals, ceramics, polymers, composites, glass, wood, fibre reinforced materials, materials in food processing, biomaterials, nano-materials, shape memory alloys etc.) and approaches (micro-macro modelling, thermo-mechanical modelling, numerical simulation including new and advanced numerical strategies, experimental analysis, inverse analysis, model identification, optimization, design and control of forming tools and machines, wear and friction, mechanical behavior and formability of materials etc.) are concerned.
期刊最新文献
The evolution of thermal cycle, microstructures and mechanical properties of 6061 – T6 aluminum alloy thick plate Bobbin tool friction stir welded Generalisation of the hydrodynamics model method for hot and cold strip rolling application UNIMAT: An enhanced forming simulation model of prepreg woven fabrics, with application to process optimization for wrinkle mitigation Optimisation of interlayer temperature in wire-arc additive manufacturing process using NURBS-based metamodel Accurate real-time modeling for multiple-blow forging
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1