Modified ridge and other regularization criteria: A brief review on meaningful regression models

S. Lipovetsky
{"title":"Modified ridge and other regularization criteria: A brief review on meaningful regression models","authors":"S. Lipovetsky","doi":"10.3233/mas-210536","DOIUrl":null,"url":null,"abstract":"The work describes a series of techniques designed to obtain regression models resistant to multicollinearity and having some other features needed for meaningful results. These models include enhanced ridge-regressions with several regularization parameters, regressions by data segments and by levels of the dependent variable, latent class models, unitary response, models, orthogonal and equidistant regressions, minimization in Lp-metric, and other criteria and models. All the approaches have been practically implemented in various projects and found useful for decision making in economics, management, marketing research, and other fields requiring data modeling and analysis.","PeriodicalId":35000,"journal":{"name":"Model Assisted Statistics and Applications","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Model Assisted Statistics and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/mas-210536","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 7

Abstract

The work describes a series of techniques designed to obtain regression models resistant to multicollinearity and having some other features needed for meaningful results. These models include enhanced ridge-regressions with several regularization parameters, regressions by data segments and by levels of the dependent variable, latent class models, unitary response, models, orthogonal and equidistant regressions, minimization in Lp-metric, and other criteria and models. All the approaches have been practically implemented in various projects and found useful for decision making in economics, management, marketing research, and other fields requiring data modeling and analysis.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
修正的ridge和其他正则化标准:有意义回归模型综述
这项工作描述了一系列技术,旨在获得抗多重共线性的回归模型,并具有一些其他有意义的结果所需的特征。这些模型包括具有多个正则化参数的增强脊回归、数据段和因变量水平的回归、潜在类模型、单一响应、模型、正交和等距回归、Lp-metric的最小化以及其他标准和模型。所有这些方法都已经在各种项目中得到了实际应用,并被发现对经济学、管理学、市场研究和其他需要数据建模和分析的领域的决策非常有用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Model Assisted Statistics and Applications
Model Assisted Statistics and Applications Mathematics-Applied Mathematics
CiteScore
1.00
自引率
0.00%
发文量
26
期刊介绍: Model Assisted Statistics and Applications is a peer reviewed international journal. Model Assisted Statistics means an improvement of inference and analysis by use of correlated information, or an underlying theoretical or design model. This might be the design, adjustment, estimation, or analytical phase of statistical project. This information may be survey generated or coming from an independent source. Original papers in the field of sampling theory, econometrics, time-series, design of experiments, and multivariate analysis will be preferred. Papers of both applied and theoretical topics are acceptable.
期刊最新文献
Limitations of the propensity scores approach: A simulation study INAR(1) process with Poisson-transmuted record type exponential innovations Estimation of three-parameter Fréchet distribution for the number of days from drug administration to remission in small sample sizes Analysis of kidney infection data using correlated compound poisson frailty models Parametric analysis and model selection for economic evaluation of survival data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1