{"title":"AI-augmented HRM: Antecedents, assimilation and multilevel consequences","authors":"Verma Prikshat , Ashish Malik , Pawan Budhwar","doi":"10.1016/j.hrmr.2021.100860","DOIUrl":null,"url":null,"abstract":"<div><p>The current literature on the use of disruptive innovative technologies, such as artificial intelligence (AI) for human resource management (HRM) function, lacks a theoretical basis for understanding. Further, the adoption and implementation of AI-augmented HRM, which holds promise for delivering several operational, relational and transformational benefits, is at best patchy and incomplete. Integrating the technology, organisation and people (TOP) framework with core elements of the theory of innovation assimilation and its impact on a range of AI-Augmented HRM outcomes, or what we refer to as (HRM<sup>(AI)</sup>), this paper develops a coherent and integrated theoretical framework of HRM<sup>(AI)</sup> assimilation. Such a framework is timely as several post-adoption challenges, such as the dark side of processual factors in innovation assimilation and system-level factors, which, if unattended, can lead to the opacity of AI applications, thereby affecting the success of any HRM<sup>(AI)</sup>. Our model proposes several testable future research propositions for advancing scholarship in this area. We conclude with implications for theory and practice.</p></div>","PeriodicalId":48145,"journal":{"name":"Human Resource Management Review","volume":"33 1","pages":"Article 100860"},"PeriodicalIF":8.2000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"29","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Human Resource Management Review","FirstCategoryId":"91","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1053482221000395","RegionNum":1,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MANAGEMENT","Score":null,"Total":0}
引用次数: 29
Abstract
The current literature on the use of disruptive innovative technologies, such as artificial intelligence (AI) for human resource management (HRM) function, lacks a theoretical basis for understanding. Further, the adoption and implementation of AI-augmented HRM, which holds promise for delivering several operational, relational and transformational benefits, is at best patchy and incomplete. Integrating the technology, organisation and people (TOP) framework with core elements of the theory of innovation assimilation and its impact on a range of AI-Augmented HRM outcomes, or what we refer to as (HRM(AI)), this paper develops a coherent and integrated theoretical framework of HRM(AI) assimilation. Such a framework is timely as several post-adoption challenges, such as the dark side of processual factors in innovation assimilation and system-level factors, which, if unattended, can lead to the opacity of AI applications, thereby affecting the success of any HRM(AI). Our model proposes several testable future research propositions for advancing scholarship in this area. We conclude with implications for theory and practice.
期刊介绍:
The Human Resource Management Review (HRMR) is a quarterly academic journal dedicated to publishing scholarly conceptual and theoretical articles in the field of human resource management and related disciplines such as industrial/organizational psychology, human capital, labor relations, and organizational behavior. HRMR encourages manuscripts that address micro-, macro-, or multi-level phenomena concerning the function and processes of human resource management. The journal publishes articles that offer fresh insights to inspire future theory development and empirical research. Critical evaluations of existing concepts, theories, models, and frameworks are also encouraged, as well as quantitative meta-analytical reviews that contribute to conceptual and theoretical understanding.
Subject areas appropriate for HRMR include (but are not limited to) Strategic Human Resource Management, International Human Resource Management, the nature and role of the human resource function in organizations, any specific Human Resource function or activity (e.g., Job Analysis, Job Design, Workforce Planning, Recruitment, Selection and Placement, Performance and Talent Management, Reward Systems, Training, Development, Careers, Safety and Health, Diversity, Fairness, Discrimination, Employment Law, Employee Relations, Labor Relations, Workforce Metrics, HR Analytics, HRM and Technology, Social issues and HRM, Separation and Retention), topics that influence or are influenced by human resource management activities (e.g., Climate, Culture, Change, Leadership and Power, Groups and Teams, Employee Attitudes and Behavior, Individual, team, and/or Organizational Performance), and HRM Research Methods.