A sentence is known by the company it keeps: Improving Legal Document Summarization Using Deep Clustering

IF 3.1 2区 社会学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Artificial Intelligence and Law Pub Date : 2023-02-01 DOI:10.1007/s10506-023-09345-y
Deepali Jain, Malaya Dutta Borah, Anupam Biswas
{"title":"A sentence is known by the company it keeps: Improving Legal Document Summarization Using Deep Clustering","authors":"Deepali Jain,&nbsp;Malaya Dutta Borah,&nbsp;Anupam Biswas","doi":"10.1007/s10506-023-09345-y","DOIUrl":null,"url":null,"abstract":"<div><p>The appropriate understanding and fast processing of lengthy legal documents are computationally challenging problems. Designing efficient automatic summarization techniques can potentially be the key to deal with such issues. Extractive summarization is one of the most popular approaches for forming summaries out of such lengthy documents, via the process of summary-relevant sentence selection. An efficient application of this approach involves appropriate scoring of sentences, which helps in the identification of more informative and essential sentences from the document. In this work, a novel sentence scoring approach DCESumm is proposed which consists of supervised sentence-level summary relevance prediction, as well as unsupervised clustering-based document-level score enhancement. Experimental results on two legal document summarization datasets, BillSum and Forum of Information Retrieval Evaluation (FIRE), reveal that the proposed approach can achieve significant improvements over the current state-of-the-art approaches. More specifically it achieves ROUGE metric F1-score improvements of (1−6)% and (6−12)% for the BillSum and FIRE test sets respectively. Such impressive summarization results suggest the usefulness of the proposed approach in finding the gist of a lengthy legal document, thereby providing crucial assistance to legal practitioners.</p></div>","PeriodicalId":51336,"journal":{"name":"Artificial Intelligence and Law","volume":"32 1","pages":"165 - 200"},"PeriodicalIF":3.1000,"publicationDate":"2023-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial Intelligence and Law","FirstCategoryId":"94","ListUrlMain":"https://link.springer.com/article/10.1007/s10506-023-09345-y","RegionNum":2,"RegionCategory":"社会学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

The appropriate understanding and fast processing of lengthy legal documents are computationally challenging problems. Designing efficient automatic summarization techniques can potentially be the key to deal with such issues. Extractive summarization is one of the most popular approaches for forming summaries out of such lengthy documents, via the process of summary-relevant sentence selection. An efficient application of this approach involves appropriate scoring of sentences, which helps in the identification of more informative and essential sentences from the document. In this work, a novel sentence scoring approach DCESumm is proposed which consists of supervised sentence-level summary relevance prediction, as well as unsupervised clustering-based document-level score enhancement. Experimental results on two legal document summarization datasets, BillSum and Forum of Information Retrieval Evaluation (FIRE), reveal that the proposed approach can achieve significant improvements over the current state-of-the-art approaches. More specifically it achieves ROUGE metric F1-score improvements of (1−6)% and (6−12)% for the BillSum and FIRE test sets respectively. Such impressive summarization results suggest the usefulness of the proposed approach in finding the gist of a lengthy legal document, thereby providing crucial assistance to legal practitioners.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
有句话是公司知道的:使用深度聚类改进法律文件摘要
正确理解和快速处理冗长的法律文件是一个极具计算挑战性的问题。设计高效的自动摘要技术可能是解决这些问题的关键。提取式摘要是通过摘要相关句子的选择过程从此类冗长文档中形成摘要的最常用方法之一。这种方法的有效应用包括对句子进行适当的评分,这有助于从文档中识别出信息量更大、更重要的句子。在这项工作中,我们提出了一种新颖的句子评分方法 DCESumm,它包括有监督的句子级摘要相关性预测,以及基于聚类的无监督文档级评分增强。在 BillSum 和 Forum of Information Retrieval Evaluation (FIRE) 这两个法律文档摘要数据集上的实验结果表明,与目前最先进的方法相比,所提出的方法可以实现显著的改进。更具体地说,它在 BillSum 和 FIRE 测试集上的 ROUGE 指标 F1 分数分别提高了 (1-6)% 和 (6-12)%。这些令人印象深刻的总结结果表明,所提出的方法在找到冗长法律文件的要点方面非常有用,从而为法律从业人员提供了重要帮助。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
9.50
自引率
26.80%
发文量
33
期刊介绍: Artificial Intelligence and Law is an international forum for the dissemination of original interdisciplinary research in the following areas: Theoretical or empirical studies in artificial intelligence (AI), cognitive psychology, jurisprudence, linguistics, or philosophy which address the development of formal or computational models of legal knowledge, reasoning, and decision making. In-depth studies of innovative artificial intelligence systems that are being used in the legal domain. Studies which address the legal, ethical and social implications of the field of Artificial Intelligence and Law. Topics of interest include, but are not limited to, the following: Computational models of legal reasoning and decision making; judgmental reasoning, adversarial reasoning, case-based reasoning, deontic reasoning, and normative reasoning. Formal representation of legal knowledge: deontic notions, normative modalities, rights, factors, values, rules. Jurisprudential theories of legal reasoning. Specialized logics for law. Psychological and linguistic studies concerning legal reasoning. Legal expert systems; statutory systems, legal practice systems, predictive systems, and normative systems. AI and law support for legislative drafting, judicial decision-making, and public administration. Intelligent processing of legal documents; conceptual retrieval of cases and statutes, automatic text understanding, intelligent document assembly systems, hypertext, and semantic markup of legal documents. Intelligent processing of legal information on the World Wide Web, legal ontologies, automated intelligent legal agents, electronic legal institutions, computational models of legal texts. Ramifications for AI and Law in e-Commerce, automatic contracting and negotiation, digital rights management, and automated dispute resolution. Ramifications for AI and Law in e-governance, e-government, e-Democracy, and knowledge-based systems supporting public services, public dialogue and mediation. Intelligent computer-assisted instructional systems in law or ethics. Evaluation and auditing techniques for legal AI systems. Systemic problems in the construction and delivery of legal AI systems. Impact of AI on the law and legal institutions. Ethical issues concerning legal AI systems. In addition to original research contributions, the Journal will include a Book Review section, a series of Technology Reports describing existing and emerging products, applications and technologies, and a Research Notes section of occasional essays posing interesting and timely research challenges for the field of Artificial Intelligence and Law. Financial support for the Journal of Artificial Intelligence and Law is provided by the University of Pittsburgh School of Law.
期刊最新文献
DiscoLQA: zero-shot discourse-based legal question answering on European Legislation A neural network to identify requests, decisions, and arguments in court rulings on custody Cytomorphological traits of fine-needle aspirates of hyalinizing trabecular tumor of the thyroid gland: A brief report. Automating petition classification in Brazil’s legal system: a two-step deep learning approach Reasoning with inconsistent precedents
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1