In Situ Grown CoMn-Based Metal-Organic Framework on Nickel Foam as Efficient and Robust Electrodes for Electrochemical Oxygen Evolution Reaction

IF 2.7 4区 工程技术 Q3 ELECTROCHEMISTRY Journal of Electrochemical Energy Conversion and Storage Pub Date : 2022-09-02 DOI:10.1115/1.4055462
L. Hua, H. Fei, Linjie Zheng, Du Zhengyao, Tang Kewen
{"title":"In Situ Grown CoMn-Based Metal-Organic Framework on Nickel Foam as Efficient and Robust Electrodes for Electrochemical Oxygen Evolution Reaction","authors":"L. Hua, H. Fei, Linjie Zheng, Du Zhengyao, Tang Kewen","doi":"10.1115/1.4055462","DOIUrl":null,"url":null,"abstract":"\n It is of great significance to develop efficient and robust oxygen evolution reaction (OER) electrocatalysts based on inexpensive and earth-abundant materials to enable water splitting as a future renewable energy source. Herein, the in situ grown CoMn-MOF-74 on nickel foam and their use as active electrodes for high-performance water-oxidation catalysis are reported. In alkaline media, the binder-free 3D electrode shows superior OER activity with a current density of 10 mA cm−2 at a small overpotential of 260 mV, a Tafel slope of 58.2 mV dec−1, as well as excellent stability, making it one of the most active OER catalysts. Such high performance is attributed to increased electrochemically-active areas, accelerated electron transport capability and the synergy between MOFs and Ni substrate. This work elucidates a promising electrode for electrochemical water oxidation and enriches direct application of MOF materials for future clean energy conversion and storage systems.","PeriodicalId":15579,"journal":{"name":"Journal of Electrochemical Energy Conversion and Storage","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2022-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Electrochemical Energy Conversion and Storage","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1115/1.4055462","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0

Abstract

It is of great significance to develop efficient and robust oxygen evolution reaction (OER) electrocatalysts based on inexpensive and earth-abundant materials to enable water splitting as a future renewable energy source. Herein, the in situ grown CoMn-MOF-74 on nickel foam and their use as active electrodes for high-performance water-oxidation catalysis are reported. In alkaline media, the binder-free 3D electrode shows superior OER activity with a current density of 10 mA cm−2 at a small overpotential of 260 mV, a Tafel slope of 58.2 mV dec−1, as well as excellent stability, making it one of the most active OER catalysts. Such high performance is attributed to increased electrochemically-active areas, accelerated electron transport capability and the synergy between MOFs and Ni substrate. This work elucidates a promising electrode for electrochemical water oxidation and enriches direct application of MOF materials for future clean energy conversion and storage systems.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
泡沫镍上原位生长的CoMn基金属有机骨架作为电化学析氧反应的高效和稳健电极
基于廉价且富含地球的材料开发高效、稳健的析氧反应(OER)电催化剂,使水分解成为未来的可再生能源,具有重要意义。本文报道了在泡沫镍上原位生长的CoMn-MOF-74及其作为高性能水氧化催化活性电极的应用。在碱性介质中,无粘合剂的3D电极显示出优异的OER活性,在260 mV的小过电位下,电流密度为10 mA cm−2,Tafel斜率为58.2 mV dec−1,以及优异的稳定性,使其成为最具活性的OER催化剂之一。这种高性能归因于增加的电化学活性区域、加速的电子传输能力以及MOFs和Ni衬底之间的协同作用。这项工作阐明了一种很有前途的电化学水氧化电极,并丰富了MOF材料在未来清洁能源转换和存储系统中的直接应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
4.90
自引率
4.00%
发文量
69
期刊介绍: The Journal of Electrochemical Energy Conversion and Storage focuses on processes, components, devices and systems that store and convert electrical and chemical energy. This journal publishes peer-reviewed archival scholarly articles, research papers, technical briefs, review articles, perspective articles, and special volumes. Specific areas of interest include electrochemical engineering, electrocatalysis, novel materials, analysis and design of components, devices, and systems, balance of plant, novel numerical and analytical simulations, advanced materials characterization, innovative material synthesis and manufacturing methods, thermal management, reliability, durability, and damage tolerance.
期刊最新文献
Internal short circuit and dynamic response of large-format prismatic lithium-ion battery under mechanical abuse Thermal runaway characteristics of Ni-rich lithium-ion batteries employing TPP-based electrolytes Coupled Multiphysics Modeling of Lithium-ion Batteries for Automotive Crashworthiness Applications Mechanical deformation in lithium-ion battery electrodes: modelling and experiment Neural Network-Based Modeling of Diffusion-Induced Stress in a Hollow Cylindrical Nano-Electrode of Lithium-Ion Battery
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1