Prospects for Fluorescence Molecular In Vivo Liquid Biopsy of Circulating Tumor Cells in Humans

M. Niedre
{"title":"Prospects for Fluorescence Molecular In Vivo Liquid Biopsy of Circulating Tumor Cells in Humans","authors":"M. Niedre","doi":"10.3389/fphot.2022.910035","DOIUrl":null,"url":null,"abstract":"Our team recently developed “Diffuse in vivo Flow Cytometry” (DiFC) for detection and enumeration rare circulating tumor cells (CTCs) in mice with highly-scattered fluorescent light. We have used DiFC to study dissemination of CTCs in a number of mouse models of metastasis with fluorescent protein expressing cells. Because DiFC uses diffuse light and interrogates large blood vessels in relatively deep tissue, in principle it could be translated to larger limbs, species, and even humans clinically. In this perspective, we discuss the technical challenges of human translation of DiFC in the context of the current state of the technology, as well as potential strategies for labeling of CTCs with targeted fluorescent molecular probes. We also discuss potential advantages and disadvantages of DiFC as a clinical tool. In principle, DiFC could represent a powerful complementary technique (to liquid biopsy blood draws) for accurate and sensitive measurement of changes in CTC numbers over time.","PeriodicalId":73099,"journal":{"name":"Frontiers in photonics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in photonics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/fphot.2022.910035","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Our team recently developed “Diffuse in vivo Flow Cytometry” (DiFC) for detection and enumeration rare circulating tumor cells (CTCs) in mice with highly-scattered fluorescent light. We have used DiFC to study dissemination of CTCs in a number of mouse models of metastasis with fluorescent protein expressing cells. Because DiFC uses diffuse light and interrogates large blood vessels in relatively deep tissue, in principle it could be translated to larger limbs, species, and even humans clinically. In this perspective, we discuss the technical challenges of human translation of DiFC in the context of the current state of the technology, as well as potential strategies for labeling of CTCs with targeted fluorescent molecular probes. We also discuss potential advantages and disadvantages of DiFC as a clinical tool. In principle, DiFC could represent a powerful complementary technique (to liquid biopsy blood draws) for accurate and sensitive measurement of changes in CTC numbers over time.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
人循环肿瘤细胞荧光分子活体液体活检的前景
我们的团队最近开发了“弥漫性体内流式细胞术”(DiFC),用于在高散射荧光灯下检测和枚举小鼠体内罕见的循环肿瘤细胞(ctc)。我们利用DiFC研究了CTCs在多种表达荧光蛋白的小鼠转移模型中的传播情况。由于DiFC使用漫射光,并在相对较深的组织中检查大血管,原则上它可以转化为更大的肢体,物种,甚至临床人类。从这个角度来看,我们讨论了在技术现状的背景下人工翻译DiFC的技术挑战,以及用靶向荧光分子探针标记ctc的潜在策略。我们还讨论了DiFC作为临床工具的潜在优点和缺点。原则上,DiFC可以代表一种强大的补充技术(液体活检血液),用于准确和敏感地测量CTC数量随时间的变化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Association of circadian dysregulation with retinal degeneration and Alzheimer’s disease: a special focus on Muller glial cells Days to re-entrainment following the spring and autumn changes in local clock time: beyond simple heuristics High-resolution imaging for in-situ non-destructive testing by quantitative lensless digital holography Broadband directional filter in multilayer liquid crystal polymer films at W-band Dual-modal photoacoustic and ultrasound imaging: from preclinical to clinical applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1