Residual stress reduction in wire arc additively manufactured parts using in-situ electric pulses

IF 3.7 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Science and Technology of Welding and Joining Pub Date : 2022-11-06 DOI:10.1080/13621718.2022.2142396
Srinath Gudur, S. Simhambhatla, N. Venkata Reddy
{"title":"Residual stress reduction in wire arc additively manufactured parts using in-situ electric pulses","authors":"Srinath Gudur, S. Simhambhatla, N. Venkata Reddy","doi":"10.1080/13621718.2022.2142396","DOIUrl":null,"url":null,"abstract":"Components fabricated in metal additive manufacturing, including wire arc additive manufacturing, undergo complex thermal cycles, resulting in residual stresses and thermal distortions. The present work investigates the effect of applying in-situ electric pulses to the component after the deposition of every layer to reduce residual stresses. The experimental results revealed that electropulsing resulted in dislocation rearrangement/annihilation, thereby decreasing dislocation density. A significant reduction in the fraction of low angle grain boundaries was observed for electropulse-treated samples, indicating a decrease in residual stress. Further, X-ray diffraction results also confirm a reduction in residual stress (24.0–29.4% reduction compared to untreated samples). The method can effectively be used to address specific regions selectively in addition to in-situ reduction of residual stresses in deposited components. Abbreviations: EBSD: electron backscattered diffraction; EPT: electropulsing treatment; EWF: electron wind force; GND: geometrically necessary dislocations; KAM: Kernel average misorientation; LAGBs: low angle grain boundaries; WAAM: wire arc additive manufacturing; XRD: X-ray diffraction","PeriodicalId":21729,"journal":{"name":"Science and Technology of Welding and Joining","volume":"28 1","pages":"193 - 199"},"PeriodicalIF":3.7000,"publicationDate":"2022-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science and Technology of Welding and Joining","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1080/13621718.2022.2142396","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 2

Abstract

Components fabricated in metal additive manufacturing, including wire arc additive manufacturing, undergo complex thermal cycles, resulting in residual stresses and thermal distortions. The present work investigates the effect of applying in-situ electric pulses to the component after the deposition of every layer to reduce residual stresses. The experimental results revealed that electropulsing resulted in dislocation rearrangement/annihilation, thereby decreasing dislocation density. A significant reduction in the fraction of low angle grain boundaries was observed for electropulse-treated samples, indicating a decrease in residual stress. Further, X-ray diffraction results also confirm a reduction in residual stress (24.0–29.4% reduction compared to untreated samples). The method can effectively be used to address specific regions selectively in addition to in-situ reduction of residual stresses in deposited components. Abbreviations: EBSD: electron backscattered diffraction; EPT: electropulsing treatment; EWF: electron wind force; GND: geometrically necessary dislocations; KAM: Kernel average misorientation; LAGBs: low angle grain boundaries; WAAM: wire arc additive manufacturing; XRD: X-ray diffraction
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用原位电脉冲减少金属丝电弧附加制造零件中的残余应力
金属增材制造(包括电弧增材制造)制造的部件经历复杂的热循环,导致残余应力和热变形。本文研究了在每层沉积后对构件施加原位电脉冲以降低残余应力的效果。实验结果表明,电脉冲导致位错重排/湮灭,从而降低了位错密度。在电脉冲处理的样品中,观察到低角晶界的比例显著减少,表明残余应力降低。此外,x射线衍射结果也证实了残余应力的降低(与未经处理的样品相比降低了24.0-29.4%)。除了原位降低沉积构件的残余应力外,该方法还可以有效地用于选择性地处理特定区域。EBSD:电子背散射衍射;EPT:电脉冲治疗;EWF:电子风力;GND:几何必要位错;KAM:核平均误差;LAGBs:低角度晶界;WAAM:丝弧增材制造;x射线衍射
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Science and Technology of Welding and Joining
Science and Technology of Welding and Joining 工程技术-材料科学:综合
CiteScore
6.10
自引率
12.10%
发文量
79
审稿时长
1.7 months
期刊介绍: Science and Technology of Welding and Joining is an international peer-reviewed journal covering both the basic science and applied technology of welding and joining. Its comprehensive scope encompasses all welding and joining techniques (brazing, soldering, mechanical joining, etc.) and aspects such as characterisation of heat sources, mathematical modelling of transport phenomena, weld pool solidification, phase transformations in weldments, microstructure-property relationships, welding processes, weld sensing, control and automation, neural network applications, and joining of advanced materials, including plastics and composites.
期刊最新文献
Evaluation of resistance spot weldability and weld performance of zinc-coated martensitic steels Investigation of keyhole behaviour and its impact on the performance of laser beam oscillating welding through imaging and acoustic signal analysis Joining mechanism evolution of fusion welded TC4 titanium alloy/304 stainless steel dissimilar joint by GTAW Influencing mechanisms of weld root tip on microstructure and mechanical properties of electron beam welded joints of titanium alloy thick plates Implementation of a two-stage algorithm for NG-GMAW seam tracking and oscillation width adaptation in pipeline welding
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1