Fatigue life prediction of 3D braided carbon/carbon composites with braided angle variation at elevated temperature

IF 2.2 4区 工程技术 Q1 MATERIALS SCIENCE, TEXTILES Journal of Engineered Fibers and Fabrics Pub Date : 2023-01-01 DOI:10.1177/15589250231176882
Xinglin Yang, Shenmin Zhang, Bo Chen, Bingjie Ma, Xue Xing
{"title":"Fatigue life prediction of 3D braided carbon/carbon composites with braided angle variation at elevated temperature","authors":"Xinglin Yang, Shenmin Zhang, Bo Chen, Bingjie Ma, Xue Xing","doi":"10.1177/15589250231176882","DOIUrl":null,"url":null,"abstract":"The braiding angle of 3D braided carbon/carbon composites (C/CCs) will change during high temperature fatigue loading, which will affect the fatigue properties of 3D braided C/CCs. In order to realize this dynamic simulation in the high temperature fatigue life prediction of 3D braided C/CCs and further improve the prediction accuracy of high temperature fatigue life of 3D braided C/CCs, a high temperature fatigue life prediction model of 3D braided C/CCs considering the change of braiding angle with fatigue cycle number was established. The establishment of the prediction model mainly includes: a meso-scale representative volume elements (RVEs) of 3D braided C/CCs considering yarn direction and fiber bundle cross-section shape is established at the meso-scale; the high temperature residual stiffness and residual strength models of fiber bundles considering high temperature and stress level are established. Based on the experimental data characteristics of high temperature fatigue residual stiffness of 3D braided C/CCs, a mathematical model of cycle number/braided angles (CN/BAs) is established. The fatigue life prediction model was used to predict the 3D braided C/CCs at 700°C and stress levels of 87% and 85%. The results showed that the prediction error of single flower node was less than 5%. The fatigue life prediction error is less than two times the tolerance.","PeriodicalId":15718,"journal":{"name":"Journal of Engineered Fibers and Fabrics","volume":" ","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Engineered Fibers and Fabrics","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1177/15589250231176882","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, TEXTILES","Score":null,"Total":0}
引用次数: 0

Abstract

The braiding angle of 3D braided carbon/carbon composites (C/CCs) will change during high temperature fatigue loading, which will affect the fatigue properties of 3D braided C/CCs. In order to realize this dynamic simulation in the high temperature fatigue life prediction of 3D braided C/CCs and further improve the prediction accuracy of high temperature fatigue life of 3D braided C/CCs, a high temperature fatigue life prediction model of 3D braided C/CCs considering the change of braiding angle with fatigue cycle number was established. The establishment of the prediction model mainly includes: a meso-scale representative volume elements (RVEs) of 3D braided C/CCs considering yarn direction and fiber bundle cross-section shape is established at the meso-scale; the high temperature residual stiffness and residual strength models of fiber bundles considering high temperature and stress level are established. Based on the experimental data characteristics of high temperature fatigue residual stiffness of 3D braided C/CCs, a mathematical model of cycle number/braided angles (CN/BAs) is established. The fatigue life prediction model was used to predict the 3D braided C/CCs at 700°C and stress levels of 87% and 85%. The results showed that the prediction error of single flower node was less than 5%. The fatigue life prediction error is less than two times the tolerance.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
高温下编织角度变化的三维编织碳/碳复合材料疲劳寿命预测
高温疲劳载荷作用下,三维编织碳/碳复合材料(C/CCs)的编织角度会发生变化,从而影响其疲劳性能。为了实现三维编织碳纤维高温疲劳寿命预测的动态仿真,进一步提高三维编织碳纤维高温疲劳寿命的预测精度,建立了考虑编织角度随疲劳循环次数变化的三维编织碳纤维高温疲劳寿命预测模型。预测模型的建立主要包括:在细观尺度上建立考虑纱线方向和纤维束截面形状的三维编织C/ cc的中观代表性体积元(RVEs);建立了考虑高温和应力水平的纤维束高温残余刚度和残余强度模型。基于三维编织碳纤维高温疲劳残余刚度的实验数据特征,建立了循环数/编织角的数学模型。采用疲劳寿命预测模型对700℃、87%和85%应力水平下的三维编织C/ cc进行了疲劳寿命预测。结果表明,单花节点的预测误差小于5%。疲劳寿命预测误差小于公差的两倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Engineered Fibers and Fabrics
Journal of Engineered Fibers and Fabrics 工程技术-材料科学:纺织
CiteScore
5.00
自引率
6.90%
发文量
41
审稿时长
4 months
期刊介绍: Journal of Engineered Fibers and Fabrics is a peer-reviewed, open access journal which aims to facilitate the rapid and wide dissemination of research in the engineering of textiles, clothing and fiber based structures.
期刊最新文献
Analysis and modeling for the dynamics of the nipper mechanism considering jaw’s impacts Effect of sizing agents on tensile properties of carbon fiber filament wound structures Research on the function of single jersey based on the 3D channel structure Study on thermal comfort of aloe viscose seamless knits Effects of inter-yarn friction on responses of woven fabrics with different weaves to a low-velocity impact
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1