Zhen Pan, Yong Qian, Yang Li, Xiaoning Xie, Ning Lin, Yitai Qian
{"title":"Novel Bilayer-Shelled N, O-Doped Hollow Porous Carbon Microspheres as High Performance Anode for Potassium-Ion Hybrid Capacitors","authors":"Zhen Pan, Yong Qian, Yang Li, Xiaoning Xie, Ning Lin, Yitai Qian","doi":"10.1007/s40820-023-01113-6","DOIUrl":null,"url":null,"abstract":"<div><h2>Highlights</h2><div>\n \n \n <ul>\n <li>\n <p>Proposing a one-step pyrolysis strategy to fabricate a novel bilayer-shelled N, O-doped hollow porous carbon microspheres (NOHPC) anode.</p>\n </li>\n <li>\n <p>The optimized NOHPC anode displays a high K-storage capacity of 325.9 mAh g<sup>−1</sup> at 0.1 A g<sup>−1</sup> and excellent rate performance (201.1 mAh g<sup>−1</sup> at 5 A g<sup>−1</sup> after 6000 cycles).</p>\n </li>\n <li>\n <p>The assembled NOHPC//hollow porous activated carbon microspheres (HPAC) potassium ion hybrid capacitors deliver a high energy density of 90.1 Wh kg<sup>−1</sup> at a power density of 939.6 W kg<sup>−1</sup> even over 6000 cycles.</p>\n </li>\n </ul>\n \n </div></div>","PeriodicalId":48779,"journal":{"name":"Nano-Micro Letters","volume":"15 1","pages":""},"PeriodicalIF":31.6000,"publicationDate":"2023-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s40820-023-01113-6.pdf","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano-Micro Letters","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s40820-023-01113-6","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 3
Abstract
Highlights
Proposing a one-step pyrolysis strategy to fabricate a novel bilayer-shelled N, O-doped hollow porous carbon microspheres (NOHPC) anode.
The optimized NOHPC anode displays a high K-storage capacity of 325.9 mAh g−1 at 0.1 A g−1 and excellent rate performance (201.1 mAh g−1 at 5 A g−1 after 6000 cycles).
The assembled NOHPC//hollow porous activated carbon microspheres (HPAC) potassium ion hybrid capacitors deliver a high energy density of 90.1 Wh kg−1 at a power density of 939.6 W kg−1 even over 6000 cycles.
提出了一步热解制备新型双壳层氮氧掺杂中空多孔碳微球(NOHPC)阳极的方法。优化后的NOHPC阳极在0.1 ag−1时具有325.9 mAh g−1的高k存储容量和优异的倍率性能(在6000次循环后,在5 ag−1时具有201.1 mAh g−1)。组装的NOHPC//空心多孔活性炭微球(HPAC)钾离子混合电容器在超过6000次循环的功率密度为939.6 W kg - 1时,其能量密度高达90.1 Wh kg - 1。
期刊介绍:
Nano-Micro Letters is a peer-reviewed, international, interdisciplinary and open-access journal that focus on science, experiments, engineering, technologies and applications of nano- or microscale structure and system in physics, chemistry, biology, material science, pharmacy and their expanding interfaces with at least one dimension ranging from a few sub-nanometers to a few hundreds of micrometers. Especially, emphasize the bottom-up approach in the length scale from nano to micro since the key for nanotechnology to reach industrial applications is to assemble, to modify, and to control nanostructure in micro scale. The aim is to provide a publishing platform crossing the boundaries, from nano to micro, and from science to technologies.