A numerical study of lightning-induced NOx and formation of NOy observed at the summit of Mt. Fuji using an explicit bulk lightning and photochemistry model
{"title":"A numerical study of lightning-induced NOx and formation of NOy observed at the summit of Mt. Fuji using an explicit bulk lightning and photochemistry model","authors":"Yousuke Sato , Mizuo Kajino , Syugo Hayashi , Ryuichi Wada","doi":"10.1016/j.aeaoa.2023.100218","DOIUrl":null,"url":null,"abstract":"<div><p>This study coupled a meteorological model with explicit bulk lightning and chemical transport models to investigate the impacts of lightning-induced nitrogen oxides (LNO<sub>x</sub>) on nitrogen monoxide (NO), nitrogen dioxide (NO<sub>2</sub>), and total reactive nitrogen oxide (NO<sub>y</sub>) measured on August 22, 2017, at the top of Mt. Fuji, Japan. Our simulation results indicated that the LNO<sub>x</sub> emitted around Wakasa Bay in the windward area of Mt. Fuji largely contributed to the NO<sub>y</sub> content measured at the top of Mt. Fuji. Furthermore, sensitivity experiments regarding the height of LNO<sub>x</sub> emissions indicated that the NO<sub>y</sub> content measured atop Mt. Fuji originated from LNO<sub>x</sub> emitted below 6 km. Our simulation assumed that a two-mode vertical distribution of LNO<sub>x</sub> emissions was more consistent with measured NO<sub>y</sub> at Mt. Fuji than a single-mode structure assumption in this case. A comparison of simulated NO<sub>x</sub> (= NO + NO<sub>2</sub>) and measured NO<sub>x</sub> at Mt. Fuji indicated that the reaction rates of the NO and NO<sub>2</sub> cycles were well reproduced in our model; however, the ratio of NO<sub>z</sub> (NO<sub>y</sub> species other than NO<sub>x</sub>) to NO<sub>y</sub> estimated by the model were lower than the observed value, implying that the model either underestimated the reaction rate of LNO<sub>x</sub> or overestimated the wet removal of lightning-induced NO<sub>z</sub>. Finally, our results also suggest that the simultaneous observation of NO<sub>y</sub> and NO<sub>x</sub> is important for understanding LNO<sub>x</sub> emissions, subsequent atmospheric chemical reactions, and removal processes, as well as validating chemical transport models.</p></div>","PeriodicalId":37150,"journal":{"name":"Atmospheric Environment: X","volume":"18 ","pages":"Article 100218"},"PeriodicalIF":3.8000,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Atmospheric Environment: X","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590162123000187","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
This study coupled a meteorological model with explicit bulk lightning and chemical transport models to investigate the impacts of lightning-induced nitrogen oxides (LNOx) on nitrogen monoxide (NO), nitrogen dioxide (NO2), and total reactive nitrogen oxide (NOy) measured on August 22, 2017, at the top of Mt. Fuji, Japan. Our simulation results indicated that the LNOx emitted around Wakasa Bay in the windward area of Mt. Fuji largely contributed to the NOy content measured at the top of Mt. Fuji. Furthermore, sensitivity experiments regarding the height of LNOx emissions indicated that the NOy content measured atop Mt. Fuji originated from LNOx emitted below 6 km. Our simulation assumed that a two-mode vertical distribution of LNOx emissions was more consistent with measured NOy at Mt. Fuji than a single-mode structure assumption in this case. A comparison of simulated NOx (= NO + NO2) and measured NOx at Mt. Fuji indicated that the reaction rates of the NO and NO2 cycles were well reproduced in our model; however, the ratio of NOz (NOy species other than NOx) to NOy estimated by the model were lower than the observed value, implying that the model either underestimated the reaction rate of LNOx or overestimated the wet removal of lightning-induced NOz. Finally, our results also suggest that the simultaneous observation of NOy and NOx is important for understanding LNOx emissions, subsequent atmospheric chemical reactions, and removal processes, as well as validating chemical transport models.