A numerical study of lightning-induced NOx and formation of NOy observed at the summit of Mt. Fuji using an explicit bulk lightning and photochemistry model

IF 3.8 Q2 ENVIRONMENTAL SCIENCES Atmospheric Environment: X Pub Date : 2023-04-01 DOI:10.1016/j.aeaoa.2023.100218
Yousuke Sato , Mizuo Kajino , Syugo Hayashi , Ryuichi Wada
{"title":"A numerical study of lightning-induced NOx and formation of NOy observed at the summit of Mt. Fuji using an explicit bulk lightning and photochemistry model","authors":"Yousuke Sato ,&nbsp;Mizuo Kajino ,&nbsp;Syugo Hayashi ,&nbsp;Ryuichi Wada","doi":"10.1016/j.aeaoa.2023.100218","DOIUrl":null,"url":null,"abstract":"<div><p>This study coupled a meteorological model with explicit bulk lightning and chemical transport models to investigate the impacts of lightning-induced nitrogen oxides (LNO<sub>x</sub>) on nitrogen monoxide (NO), nitrogen dioxide (NO<sub>2</sub>), and total reactive nitrogen oxide (NO<sub>y</sub>) measured on August 22, 2017, at the top of Mt. Fuji, Japan. Our simulation results indicated that the LNO<sub>x</sub> emitted around Wakasa Bay in the windward area of Mt. Fuji largely contributed to the NO<sub>y</sub> content measured at the top of Mt. Fuji. Furthermore, sensitivity experiments regarding the height of LNO<sub>x</sub> emissions indicated that the NO<sub>y</sub> content measured atop Mt. Fuji originated from LNO<sub>x</sub> emitted below 6 km. Our simulation assumed that a two-mode vertical distribution of LNO<sub>x</sub> emissions was more consistent with measured NO<sub>y</sub> at Mt. Fuji than a single-mode structure assumption in this case. A comparison of simulated NO<sub>x</sub> (= NO + NO<sub>2</sub>) and measured NO<sub>x</sub> at Mt. Fuji indicated that the reaction rates of the NO and NO<sub>2</sub> cycles were well reproduced in our model; however, the ratio of NO<sub>z</sub> (NO<sub>y</sub> species other than NO<sub>x</sub>) to NO<sub>y</sub> estimated by the model were lower than the observed value, implying that the model either underestimated the reaction rate of LNO<sub>x</sub> or overestimated the wet removal of lightning-induced NO<sub>z</sub>. Finally, our results also suggest that the simultaneous observation of NO<sub>y</sub> and NO<sub>x</sub> is important for understanding LNO<sub>x</sub> emissions, subsequent atmospheric chemical reactions, and removal processes, as well as validating chemical transport models.</p></div>","PeriodicalId":37150,"journal":{"name":"Atmospheric Environment: X","volume":"18 ","pages":"Article 100218"},"PeriodicalIF":3.8000,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Atmospheric Environment: X","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590162123000187","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

This study coupled a meteorological model with explicit bulk lightning and chemical transport models to investigate the impacts of lightning-induced nitrogen oxides (LNOx) on nitrogen monoxide (NO), nitrogen dioxide (NO2), and total reactive nitrogen oxide (NOy) measured on August 22, 2017, at the top of Mt. Fuji, Japan. Our simulation results indicated that the LNOx emitted around Wakasa Bay in the windward area of Mt. Fuji largely contributed to the NOy content measured at the top of Mt. Fuji. Furthermore, sensitivity experiments regarding the height of LNOx emissions indicated that the NOy content measured atop Mt. Fuji originated from LNOx emitted below 6 km. Our simulation assumed that a two-mode vertical distribution of LNOx emissions was more consistent with measured NOy at Mt. Fuji than a single-mode structure assumption in this case. A comparison of simulated NOx (= NO + NO2) and measured NOx at Mt. Fuji indicated that the reaction rates of the NO and NO2 cycles were well reproduced in our model; however, the ratio of NOz (NOy species other than NOx) to NOy estimated by the model were lower than the observed value, implying that the model either underestimated the reaction rate of LNOx or overestimated the wet removal of lightning-induced NOz. Finally, our results also suggest that the simultaneous observation of NOy and NOx is important for understanding LNOx emissions, subsequent atmospheric chemical reactions, and removal processes, as well as validating chemical transport models.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用显式整体闪电和光化学模型对富士山顶闪电诱发NOx和NOy形成的数值研究
本研究将气象模型与显式闪电和化学输运模型相结合,研究了2017年8月22日在日本富士山山顶测量的雷电致氮氧化物(LNOx)对一氧化氮(NO)、二氧化氮(NO2)和总活性氮氧化物(NOy)的影响。我们的模拟结果表明,富士山迎风区若浅湾周围排放的LNOx对富士山顶部测量的NOy含量有很大贡献。此外,关于LNOx排放高度的灵敏度实验表明,富士山山顶测量的NOy含量来自6 km以下排放的LNOx。在这种情况下,我们的模拟假设LNOx排放的双模垂直分布比单模结构假设更符合富士山测量的NOy。富士山模拟NOx (= NO + NO2)与实测NOx的比较表明,该模型可以很好地再现NO和NO2循环的反应速率;然而,模型估算的NOz(除NOx以外的NOy种类)与NOy的比值低于观测值,这意味着模型要么低估了LNOx的反应速率,要么高估了雷击诱导NOz的湿法去除。最后,我们的研究结果还表明,同时观测NOy和NOx对于理解LNOx排放、随后的大气化学反应和去除过程以及验证化学传输模型非常重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Atmospheric Environment: X
Atmospheric Environment: X Environmental Science-Environmental Science (all)
CiteScore
8.00
自引率
0.00%
发文量
47
审稿时长
12 weeks
期刊最新文献
Investigating the spatiotemporal distribution of fine particulate matter sources during persistent cold air pools in Salt Lake County Quantification of braking particles emission by PIV analysis — Application on railway Emission location affects impacts on atmosphere and climate from alternative fuels for Norwegian domestic aviation Variability of aerosol particle concentrations from tyre and brake wear emissions in an urban area Detection and analysis of ship emissions using single-particle mass spectrometry: A land-based field study in the port of rostock, Germany
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1