Modeling Active Colloids: From Active Brownian Particles to Hydrodynamic and Chemical Fields

IF 14.3 1区 物理与天体物理 Q1 PHYSICS, CONDENSED MATTER Annual Review of Condensed Matter Physics Pub Date : 2022-10-20 DOI:10.1146/annurev-conmatphys-040821-115500
A. Zöttl, H. Stark
{"title":"Modeling Active Colloids: From Active Brownian Particles to Hydrodynamic and Chemical Fields","authors":"A. Zöttl, H. Stark","doi":"10.1146/annurev-conmatphys-040821-115500","DOIUrl":null,"url":null,"abstract":"Active colloids are self-propelled particles moving in viscous fluids by consuming fuel from their surroundings. Here, we review the numerical and theoretical modeling of active colloids propelled by self-generated near-surface flows. We start with the generic model of an active Brownian particle taking into account potential forces and effective pairwise interaction, which include hydrodynamic and phoretic interactions. Also, the squirmer as a model microswimmer is introduced. We then discuss the explicit modeling of self-generated fluid flow and the full hydrodynamic-chemical coupling. Finally, we discuss recent advances in selected topics in which modeling of active colloids is used to study motion in crowded and complex environments, microrheology in active baths, active colloidal engines, adaptive responses of active colloids with the help of machine learning techniques, as well as effects of colloid and fluid inertia. Expected final online publication date for the Annual Review of Condensed Matter Physics, Volume 14 is March 2023. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.","PeriodicalId":7925,"journal":{"name":"Annual Review of Condensed Matter Physics","volume":" ","pages":""},"PeriodicalIF":14.3000,"publicationDate":"2022-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual Review of Condensed Matter Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1146/annurev-conmatphys-040821-115500","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 15

Abstract

Active colloids are self-propelled particles moving in viscous fluids by consuming fuel from their surroundings. Here, we review the numerical and theoretical modeling of active colloids propelled by self-generated near-surface flows. We start with the generic model of an active Brownian particle taking into account potential forces and effective pairwise interaction, which include hydrodynamic and phoretic interactions. Also, the squirmer as a model microswimmer is introduced. We then discuss the explicit modeling of self-generated fluid flow and the full hydrodynamic-chemical coupling. Finally, we discuss recent advances in selected topics in which modeling of active colloids is used to study motion in crowded and complex environments, microrheology in active baths, active colloidal engines, adaptive responses of active colloids with the help of machine learning techniques, as well as effects of colloid and fluid inertia. Expected final online publication date for the Annual Review of Condensed Matter Physics, Volume 14 is March 2023. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
模拟活性胶体:从活性布朗粒子到流体动力学和化学场
活性胶体是通过消耗周围环境中的燃料在粘性流体中移动的自推进颗粒。在这里,我们回顾了由自发近表面流推动的活性胶体的数值和理论建模。我们从活性布朗粒子的一般模型开始,考虑了势能和有效的成对相互作用,包括流体动力学和电泳相互作用。此外,还介绍了蠕动器作为微型游动器的模型。然后,我们讨论了自生流体流动的显式建模和全流体动力学化学耦合。最后,我们讨论了选定主题的最新进展,其中活性胶体的建模用于研究拥挤和复杂环境中的运动、活性浴中的微流变学、活性胶体发动机、借助机器学习技术的活性胶体的自适应响应,以及胶体和流体惯性的影响。《凝聚态物理学年度评论》第14卷预计最终在线出版日期为2023年3月。请参阅http://www.annualreviews.org/page/journal/pubdates用于修订估算。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Annual Review of Condensed Matter Physics
Annual Review of Condensed Matter Physics PHYSICS, CONDENSED MATTER-
CiteScore
47.40
自引率
0.90%
发文量
27
期刊介绍: Since its inception in 2010, the Annual Review of Condensed Matter Physics has been chronicling significant advancements in the field and its related subjects. By highlighting recent developments and offering critical evaluations, the journal actively contributes to the ongoing discourse in condensed matter physics. The latest volume of the journal has transitioned from gated access to open access, facilitated by Annual Reviews' Subscribe to Open initiative. Under this program, all articles are now published under a CC BY license, ensuring broader accessibility and dissemination of knowledge.
期刊最新文献
Machine Learning for Climate Physics and Simulations From Fluctuations and Disorder to Scaling and Control: The Emergence of Resistance in Microbial Communities Activity Unmasks Chirality in Liquid-Crystalline Matter High-Order Van Hove Singularities and Their Connection to Flat Bands Emergent Simplicities in the Living Histories of Individual Cells
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1