{"title":"Bayesian calibration of electrical conductivity relaxation and isotope exchange-secondary ion mass spectrometry experiments","authors":"David S. Mebane","doi":"10.1007/s10832-023-00323-z","DOIUrl":null,"url":null,"abstract":"<div><p>Bayesian calibration is a powerful tool for measurement techniques that involve the estimation of physical parameters via calibrating (or “fitting”) a model to an experimental dataset. In contrast to optimization techniques, which produce a ’point estimate’ of the parameters devoid of uncertainty quantification, Bayesian calibration returns a distribution on the parameter space, revealing the extent to which each parameter can be considered well-estimated as well as any confounding uncertainty in multi-parameter calibration. This article covers the basic theory along with the practicalities of implementation for Bayesian calibration, linking these principles to a new open source software package for Bayesian calibration of electrical conductivity relaxation and isotope-exchange / secondary ion mass spectrometry measurements.</p></div>","PeriodicalId":625,"journal":{"name":"Journal of Electroceramics","volume":"51 4","pages":"239 - 245"},"PeriodicalIF":1.7000,"publicationDate":"2023-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Electroceramics","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s10832-023-00323-z","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
引用次数: 0
Abstract
Bayesian calibration is a powerful tool for measurement techniques that involve the estimation of physical parameters via calibrating (or “fitting”) a model to an experimental dataset. In contrast to optimization techniques, which produce a ’point estimate’ of the parameters devoid of uncertainty quantification, Bayesian calibration returns a distribution on the parameter space, revealing the extent to which each parameter can be considered well-estimated as well as any confounding uncertainty in multi-parameter calibration. This article covers the basic theory along with the practicalities of implementation for Bayesian calibration, linking these principles to a new open source software package for Bayesian calibration of electrical conductivity relaxation and isotope-exchange / secondary ion mass spectrometry measurements.
期刊介绍:
While ceramics have traditionally been admired for their mechanical, chemical and thermal stability, their unique electrical, optical and magnetic properties have become of increasing importance in many key technologies including communications, energy conversion and storage, electronics and automation. Electroceramics benefit greatly from their versatility in properties including:
-insulating to metallic and fast ion conductivity
-piezo-, ferro-, and pyro-electricity
-electro- and nonlinear optical properties
-feromagnetism.
When combined with thermal, mechanical, and chemical stability, these properties often render them the materials of choice.
The Journal of Electroceramics is dedicated to providing a forum of discussion cutting across issues in electrical, optical, and magnetic ceramics. Driven by the need for miniaturization, cost, and enhanced functionality, the field of electroceramics is growing rapidly in many new directions. The Journal encourages discussions of resultant trends concerning silicon-electroceramic integration, nanotechnology, ceramic-polymer composites, grain boundary and defect engineering, etc.