An Efficient Convolutional Neural Network to Detect and Count Blood Cells

IF 0.6 Q3 MULTIDISCIPLINARY SCIENCES Uniciencia Pub Date : 2022-03-30 DOI:10.15359/ru.36-1.28
R. Joshi, Saumya Yadav, M. Dutta, C. Travieso-González
{"title":"An Efficient Convolutional Neural Network to Detect and Count Blood Cells","authors":"R. Joshi, Saumya Yadav, M. Dutta, C. Travieso-González","doi":"10.15359/ru.36-1.28","DOIUrl":null,"url":null,"abstract":"Blood cell analysis is an important part of the health and immunity assessment. There are three major components of the blood: red blood cells, white blood cells, and platelets. The count and density of these blood cells are used to find multiple disorders like blood infections (anemia, leukemia, among others). Traditional methods are time-consuming, and the test cost is high. Thus, it arises the need for automated methods that can detect different kinds of blood cells and count the number of cells. A convolutional neural network-based framework is proposed for detecting and counting the cells. The neural network is trained for the multiple iterations, and a model having lower validation loss is saved. The experiments are done to analyze the performance of the detection system and results with high accuracy in the counting of the cells. The mean average precision is achieved when compared to ground truth provided to respective labels. The value of the average precision is found to be ranging from 70% to 99.1%, with a mean average precision value of 85.35%. The proposed framework had much less time complexity: it took only 0.111 seconds to process an image frame with dimensions of 640×480 pixels. The system can also be implemented in low-cost, single-board computers for rapid prototyping. The efficiency of the proposed framework to identify and count different blood cells can be utilized to assist medical professionals in finding disorders and making decisions based on the obtained report.","PeriodicalId":42209,"journal":{"name":"Uniciencia","volume":" ","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2022-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Uniciencia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15359/ru.36-1.28","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 1

Abstract

Blood cell analysis is an important part of the health and immunity assessment. There are three major components of the blood: red blood cells, white blood cells, and platelets. The count and density of these blood cells are used to find multiple disorders like blood infections (anemia, leukemia, among others). Traditional methods are time-consuming, and the test cost is high. Thus, it arises the need for automated methods that can detect different kinds of blood cells and count the number of cells. A convolutional neural network-based framework is proposed for detecting and counting the cells. The neural network is trained for the multiple iterations, and a model having lower validation loss is saved. The experiments are done to analyze the performance of the detection system and results with high accuracy in the counting of the cells. The mean average precision is achieved when compared to ground truth provided to respective labels. The value of the average precision is found to be ranging from 70% to 99.1%, with a mean average precision value of 85.35%. The proposed framework had much less time complexity: it took only 0.111 seconds to process an image frame with dimensions of 640×480 pixels. The system can also be implemented in low-cost, single-board computers for rapid prototyping. The efficiency of the proposed framework to identify and count different blood cells can be utilized to assist medical professionals in finding disorders and making decisions based on the obtained report.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种高效的检测和计数血细胞的卷积神经网络
血细胞分析是健康和免疫评估的重要组成部分。血液有三种主要成分:红细胞、白细胞和血小板。这些血细胞的计数和密度被用来发现多种疾病,如血液感染(贫血、白血病等)。传统方法耗时,测试成本高。因此,需要能够检测不同种类的血细胞并计数细胞数量的自动化方法。提出了一种基于卷积神经网络的细胞检测和计数框架。针对多次迭代对神经网络进行训练,并且保存了具有较低验证损失的模型。实验分析了检测系统的性能,并在细胞计数中获得了高精度的结果。当与提供给各个标签的基本事实相比较时,实现了平均精度。平均精度值在70%到99.1%之间,平均精度值为85.35%。所提出的框架的时间复杂度要低得多:处理640×480像素的图像帧只需0.111秒。该系统也可以在低成本的单板计算机中实现,用于快速原型设计。所提出的识别和计数不同血细胞的框架的效率可用于帮助医疗专业人员发现疾病并根据获得的报告做出决定。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Uniciencia
Uniciencia MULTIDISCIPLINARY SCIENCES-
CiteScore
1.60
自引率
12.50%
发文量
49
审稿时长
40 weeks
期刊最新文献
Guía de valoración de la idoneidad didáctica de procesos de estudio de la diferencial Significados personales en la formulación y argumentación de conjeturas en estudiantes de la escuela secundaria Estructura y composición en un manglar del Pacífico Central de Costa Rica: población de moluscos de interés comercial Analysis of the School Climate Scale in University Environments (ECEAU) Potential for Saving Drinking Water Through the Use of Rainwater in Social Housing in Viçosa-Brazil
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1