Zhibing Sha, Jun Li, Fengxiang Zhang, Min Huang, Zhigang Cai, François Trahay, Jianwei Liao
{"title":"Visibility Graph-based Cache Management for DRAM Buffer Inside Solid-state Drives","authors":"Zhibing Sha, Jun Li, Fengxiang Zhang, Min Huang, Zhigang Cai, François Trahay, Jianwei Liao","doi":"10.1145/3586576","DOIUrl":null,"url":null,"abstract":"Most solid-state drives (SSDs) adopt an on-board Dynamic Random Access Memory (DRAM) to buffer the write data, which can significantly reduce the amount of write operations committed to the flash array of SSD if data exhibits locality in write operations. This article focuses on efficiently managing the small amount of DRAM cache inside SSDs. The basic idea is to employ the visibility graph technique to unify both temporal and spatial locality of references of I/O accesses, for directing cache management in SSDs. Specifically, we propose to adaptively generate the visibility graph of cached data pages and then support batch adjustment of adjacent or nearby (hot) cached data pages by referring to the connection situations in the visibility graph. In addition, we propose to evict the buffered data pages in batches by also referring to the connection situations, to maximize the internal flushing parallelism of SSD devices without worsening I/O congestion. The trace-driven simulation experiments show that our proposal can yield improvements on cache hits by between 0.8% and 19.8%, and the overall I/O latency by 25.6% on average, compared to state-of-the-art cache management schemes inside SSDs.","PeriodicalId":49113,"journal":{"name":"ACM Transactions on Storage","volume":" ","pages":"1 - 21"},"PeriodicalIF":2.1000,"publicationDate":"2023-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Storage","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3586576","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0
Abstract
Most solid-state drives (SSDs) adopt an on-board Dynamic Random Access Memory (DRAM) to buffer the write data, which can significantly reduce the amount of write operations committed to the flash array of SSD if data exhibits locality in write operations. This article focuses on efficiently managing the small amount of DRAM cache inside SSDs. The basic idea is to employ the visibility graph technique to unify both temporal and spatial locality of references of I/O accesses, for directing cache management in SSDs. Specifically, we propose to adaptively generate the visibility graph of cached data pages and then support batch adjustment of adjacent or nearby (hot) cached data pages by referring to the connection situations in the visibility graph. In addition, we propose to evict the buffered data pages in batches by also referring to the connection situations, to maximize the internal flushing parallelism of SSD devices without worsening I/O congestion. The trace-driven simulation experiments show that our proposal can yield improvements on cache hits by between 0.8% and 19.8%, and the overall I/O latency by 25.6% on average, compared to state-of-the-art cache management schemes inside SSDs.
期刊介绍:
The ACM Transactions on Storage (TOS) is a new journal with an intent to publish original archival papers in the area of storage and closely related disciplines. Articles that appear in TOS will tend either to present new techniques and concepts or to report novel experiences and experiments with practical systems. Storage is a broad and multidisciplinary area that comprises of network protocols, resource management, data backup, replication, recovery, devices, security, and theory of data coding, densities, and low-power. Potential synergies among these fields are expected to open up new research directions.