{"title":"Elastic Constants, Bulk Modulus, and Compressibility of H2O Ice Ihfor the Temperature Range 50 K–273 K","authors":"J. Neumeier","doi":"10.1063/1.5030640","DOIUrl":null,"url":null,"abstract":"Published elastic constant data for H2O ice in the Ih phase are compiled and evaluated. Fits of the five elastic constants for 50 ≤ T/K ≤ 273 are conducted to yield a reliable and convenient source for elastic constant values. Various elastic properties can be calculated from the elastic constants obtained herein. The elastic constants are used to determine the adiabatic bulk modulus BS for the same temperature range with an estimated uncertainty of less than 1.3%. Fitting those data yields an equation for BS that is extrapolated to provide values for 0 ≤ T/K < 50. The adiabatic compressibility KS, isothermal bulk modulus BT, and isothermal compressibility KT are calculated from BS. Comparisons are made to published data.Published elastic constant data for H2O ice in the Ih phase are compiled and evaluated. Fits of the five elastic constants for 50 ≤ T/K ≤ 273 are conducted to yield a reliable and convenient source for elastic constant values. Various elastic properties can be calculated from the elastic constants obtained herein. The elastic constants are used to determine the adiabatic bulk modulus BS for the same temperature range with an estimated uncertainty of less than 1.3%. Fitting those data yields an equation for BS that is extrapolated to provide values for 0 ≤ T/K < 50. The adiabatic compressibility KS, isothermal bulk modulus BT, and isothermal compressibility KT are calculated from BS. Comparisons are made to published data.","PeriodicalId":16783,"journal":{"name":"Journal of Physical and Chemical Reference Data","volume":" ","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2018-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1063/1.5030640","citationCount":"22","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physical and Chemical Reference Data","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1063/1.5030640","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 22
Abstract
Published elastic constant data for H2O ice in the Ih phase are compiled and evaluated. Fits of the five elastic constants for 50 ≤ T/K ≤ 273 are conducted to yield a reliable and convenient source for elastic constant values. Various elastic properties can be calculated from the elastic constants obtained herein. The elastic constants are used to determine the adiabatic bulk modulus BS for the same temperature range with an estimated uncertainty of less than 1.3%. Fitting those data yields an equation for BS that is extrapolated to provide values for 0 ≤ T/K < 50. The adiabatic compressibility KS, isothermal bulk modulus BT, and isothermal compressibility KT are calculated from BS. Comparisons are made to published data.Published elastic constant data for H2O ice in the Ih phase are compiled and evaluated. Fits of the five elastic constants for 50 ≤ T/K ≤ 273 are conducted to yield a reliable and convenient source for elastic constant values. Various elastic properties can be calculated from the elastic constants obtained herein. The elastic constants are used to determine the adiabatic bulk modulus BS for the same temperature range with an estimated uncertainty of less than 1.3%. Fitting those data yields an equation for BS that is extrapolated to provide values for 0 ≤ T/K < 50. The adiabatic compressibility KS, isothermal bulk modulus BT, and isothermal compressibility KT are calculated from BS. Comparisons are made to published data.
期刊介绍:
The Journal of Physical and Chemical Reference Data (JPCRD) is published by AIP Publishing for the U.S. Department of Commerce National Institute of Standards and Technology (NIST). The journal provides critically evaluated physical and chemical property data, fully documented as to the original sources and the criteria used for evaluation, preferably with uncertainty analysis. Critical reviews may also be included if they document a reference database, review the data situation in a field, review reference-quality measurement techniques, or review data evaluation methods.