High-Speed Jet Injector for Pharmaceutical Applications

IF 0.8 4区 医学 Q4 ENGINEERING, BIOMEDICAL Journal of Medical Devices-Transactions of the Asme Pub Date : 2022-05-12 DOI:10.1115/1.4054549
Priyanka Hankare, Ashish Agrawala, V. Menezes
{"title":"High-Speed Jet Injector for Pharmaceutical Applications","authors":"Priyanka Hankare, Ashish Agrawala, V. Menezes","doi":"10.1115/1.4054549","DOIUrl":null,"url":null,"abstract":"\n A shock wave-driven needle-free syringe was developed and tested for liquid jet delivery into an artificial skin model and porcine skin samples. The device could deliver an adequate volume of liquid to a depth sufficient for drug dissemination in skin samples. The device is equipped with a splash-proof conduit and a silencer for smooth operation. The concept is expected to minimize the pain of liquid injection by a) minimally breaching the blood vessels in the skin, b) reducing trauma, inflammation and aiding regeneration of the incised spot by the liquid of the jet, and c) preserving most of the micro-circulation system in the target, enabling an effective drug uptake. A theoretical model that predicts jet penetration into viscoelastic targets is derived and presented. A sound agreement has been observed between the experimental jet penetration depths and the corresponding theoretical predictions. The development can offer a cost-effective, minimally invasive health care solution for immunization and drug delivery.","PeriodicalId":49305,"journal":{"name":"Journal of Medical Devices-Transactions of the Asme","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2022-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Medical Devices-Transactions of the Asme","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1115/1.4054549","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

A shock wave-driven needle-free syringe was developed and tested for liquid jet delivery into an artificial skin model and porcine skin samples. The device could deliver an adequate volume of liquid to a depth sufficient for drug dissemination in skin samples. The device is equipped with a splash-proof conduit and a silencer for smooth operation. The concept is expected to minimize the pain of liquid injection by a) minimally breaching the blood vessels in the skin, b) reducing trauma, inflammation and aiding regeneration of the incised spot by the liquid of the jet, and c) preserving most of the micro-circulation system in the target, enabling an effective drug uptake. A theoretical model that predicts jet penetration into viscoelastic targets is derived and presented. A sound agreement has been observed between the experimental jet penetration depths and the corresponding theoretical predictions. The development can offer a cost-effective, minimally invasive health care solution for immunization and drug delivery.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于制药的高速喷射器
开发并测试了一种冲击波驱动的无针注射器,用于将液体喷射输送到人造皮肤模型和猪皮样品中。该装置可以将足够体积的液体输送到足以使药物在皮肤样本中传播的深度。该装置配有防溅导管和消音器,以确保平稳运行。该概念有望通过a)最小限度地破坏皮肤中的血管,b)减少创伤、炎症并通过射流的液体帮助切割部位的再生,以及c)保留目标中的大部分微循环系统,从而实现有效的药物摄取,从而最大限度地减少液体注射的疼痛。推导并提出了预测射流侵彻粘弹性目标的理论模型。在实验射流穿透深度和相应的理论预测之间已经观察到了良好的一致性。该开发可以为免疫和药物递送提供一种成本效益高、微创的医疗保健解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
1.80
自引率
11.10%
发文量
56
审稿时长
6-12 weeks
期刊介绍: The Journal of Medical Devices presents papers on medical devices that improve diagnostic, interventional and therapeutic treatments focusing on applied research and the development of new medical devices or instrumentation. It provides special coverage of novel devices that allow new surgical strategies, new methods of drug delivery, or possible reductions in the complexity, cost, or adverse results of health care. The Design Innovation category features papers focusing on novel devices, including papers with limited clinical or engineering results. The Medical Device News section provides coverage of advances, trends, and events.
期刊最新文献
A Novel Design Method for the Knee Joint of the Exoskeleton Based On the Modular Wearable Sensor Experimental Investigation of the Calcified Plaque Material Removal Rate in Coronary Rotational Atherectomy Assessment of a Novel Application of the Capture-Trap-Terminate Approach for Treating Aerosol Products During Dental Procedures Development And Mechanical Testing Of Implant For Cranial Reconstruction After Burr Hole Trepanation In Vitro Thrombogenicity Testing of Biomaterials in a Dynamic Flow Loop: Effects of Length and Quantity of Test Samples.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1