AI for AI: Using AI methods for classifying AI science documents

IF 4.1 Q1 INFORMATION SCIENCE & LIBRARY SCIENCE Quantitative Science Studies Pub Date : 2022-11-15 DOI:10.1162/qss_a_00223
E. Sachini, Konstantinos Sioumalas-Christodoulou, S. Christopoulos, Nikolaos Karampekios
{"title":"AI for AI: Using AI methods for classifying AI science documents","authors":"E. Sachini, Konstantinos Sioumalas-Christodoulou, S. Christopoulos, Nikolaos Karampekios","doi":"10.1162/qss_a_00223","DOIUrl":null,"url":null,"abstract":"Abstract Subject area classification is an important first phase in the entire process involved in bibliometrics. In this paper, we explore the possibility of using automated algorithms for classifying scientific papers related to Artificial Intelligence at the document level. The current process is semimanual and journal based, a realization that, we argue, opens up the potential for inaccuracies. To counter this, our proposed automated approach makes use of neural networks, specifically BERT. The classification accuracy of our model reaches 96.5%. In addition, the model was used for further classifying documents from 26 different subject areas from the Scopus database. Our findings indicate that a significant subset of existing Computer Science, Decision Science, and Mathematics publications could potentially be classified as AI-related. The same holds in particular cases in other science fields such as Medicine and Psychology or Arts and Humanities. The above indicate that in subject area classification processes, there is room for automatic approaches to be utilized in a complementary manner with traditional manual procedures.","PeriodicalId":34021,"journal":{"name":"Quantitative Science Studies","volume":"3 1","pages":"1119-1132"},"PeriodicalIF":4.1000,"publicationDate":"2022-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantitative Science Studies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1162/qss_a_00223","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"INFORMATION SCIENCE & LIBRARY SCIENCE","Score":null,"Total":0}
引用次数: 1

Abstract

Abstract Subject area classification is an important first phase in the entire process involved in bibliometrics. In this paper, we explore the possibility of using automated algorithms for classifying scientific papers related to Artificial Intelligence at the document level. The current process is semimanual and journal based, a realization that, we argue, opens up the potential for inaccuracies. To counter this, our proposed automated approach makes use of neural networks, specifically BERT. The classification accuracy of our model reaches 96.5%. In addition, the model was used for further classifying documents from 26 different subject areas from the Scopus database. Our findings indicate that a significant subset of existing Computer Science, Decision Science, and Mathematics publications could potentially be classified as AI-related. The same holds in particular cases in other science fields such as Medicine and Psychology or Arts and Humanities. The above indicate that in subject area classification processes, there is room for automatic approaches to be utilized in a complementary manner with traditional manual procedures.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
AI for AI:使用AI方法对AI科学文献进行分类
学科领域分类是文献计量学整个过程中重要的第一步。在本文中,我们探索了在文档级别使用自动算法对与人工智能相关的科学论文进行分类的可能性。目前的过程是半手工和基于期刊的,我们认为,这种认识可能会导致不准确。为了解决这个问题,我们提出的自动化方法利用神经网络,特别是BERT。该模型的分类准确率达到96.5%。此外,该模型还用于对Scopus数据库中26个不同主题领域的文档进行进一步分类。我们的研究结果表明,现有的计算机科学、决策科学和数学出版物的一个重要子集可能被归类为与人工智能相关的。这同样适用于其他科学领域,如医学和心理学或艺术和人文学科。上述情况表明,在主题领域分类过程中,可以利用自动方法作为传统手工程序的补充。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Quantitative Science Studies
Quantitative Science Studies INFORMATION SCIENCE & LIBRARY SCIENCE-
CiteScore
12.10
自引率
12.50%
发文量
46
审稿时长
22 weeks
期刊介绍:
期刊最新文献
Technological Impact of Funded Research: A Case Study of Non-Patent References Socio-cultural factors and academic openness of world countries Scope and limitations of library metrics for the assessment of ebook usage: COUNTER R5 and link resolver The rise of responsible metrics as a professional reform movement: A collective action frames account New methodologies for the digital age? How methods (re-)organize research using social media data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1