Soil microbial population as affected by tillage and rice cultivation modes in Stagnic Anthrosols and Lateritic Red Earth soils in Southern China

IF 2.1 Q3 SOIL SCIENCE Frontiers in soil science Pub Date : 2022-10-13 DOI:10.3389/fsoil.2022.1020814
Evans Asenso, Zhimin Wang, Tian Kai, Jiuhao Li, Lian Hu
{"title":"Soil microbial population as affected by tillage and rice cultivation modes in Stagnic Anthrosols and Lateritic Red Earth soils in Southern China","authors":"Evans Asenso, Zhimin Wang, Tian Kai, Jiuhao Li, Lian Hu","doi":"10.3389/fsoil.2022.1020814","DOIUrl":null,"url":null,"abstract":"The microbial population (MP) is considered to be a relatively important part of soil health, quality, and productivity. Therefore, this study aimed to access the effects of tillage and rice cultivation modes on soil MP in Stagnic Anthrosols and Lateritic Red Earth soils. The treatments were as follows: (i) MDS: land tilled twice with a moldboard plow and hill-seeding of pregerminated seeds with a direct seeding machine of four to six seeds per hill at a planting space of 25 × 15 cm, (ii) RDS: land tilled twice with a rotary tiller and hill-seeding of pregerminated seeds with a direct seeding machine of four to six seeds per hill at a planting space of 25 × 15 cm, (iii) MMT: land tilled twice with a moldboard plow and 15-day-old seedlings were mechanically transplanted with a transplanting machine at a transplanting hill of four to six seedlings and at a transplanting space of 25 × 15 cm, and (iv) RMT: land tilled twice with a rotary tiller and 15-day-old seedlings were mechanically transplanted with a transplanting machine at a transplanting hill of four to six seedlings and a transplanting space of 25 × 15 cm. The findings showed that MDS improved the MP and increases rice yield. MDS showed a high increase in MP in both locations and the rice productivity of 32.81% (1H; first harvest) and 13.91% (2H; second harvest) and 16.48% (1H) and 18.13% (2H) for Zeng-Cheng and Yi-Yang, respectively. In conclusion, MDS was found to be better in improving the MP and increasing rice yield and could be adopted as a suitable approach for improving soil health, quality, and productivity.","PeriodicalId":73107,"journal":{"name":"Frontiers in soil science","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2022-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in soil science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/fsoil.2022.1020814","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"SOIL SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

The microbial population (MP) is considered to be a relatively important part of soil health, quality, and productivity. Therefore, this study aimed to access the effects of tillage and rice cultivation modes on soil MP in Stagnic Anthrosols and Lateritic Red Earth soils. The treatments were as follows: (i) MDS: land tilled twice with a moldboard plow and hill-seeding of pregerminated seeds with a direct seeding machine of four to six seeds per hill at a planting space of 25 × 15 cm, (ii) RDS: land tilled twice with a rotary tiller and hill-seeding of pregerminated seeds with a direct seeding machine of four to six seeds per hill at a planting space of 25 × 15 cm, (iii) MMT: land tilled twice with a moldboard plow and 15-day-old seedlings were mechanically transplanted with a transplanting machine at a transplanting hill of four to six seedlings and at a transplanting space of 25 × 15 cm, and (iv) RMT: land tilled twice with a rotary tiller and 15-day-old seedlings were mechanically transplanted with a transplanting machine at a transplanting hill of four to six seedlings and a transplanting space of 25 × 15 cm. The findings showed that MDS improved the MP and increases rice yield. MDS showed a high increase in MP in both locations and the rice productivity of 32.81% (1H; first harvest) and 13.91% (2H; second harvest) and 16.48% (1H) and 18.13% (2H) for Zeng-Cheng and Yi-Yang, respectively. In conclusion, MDS was found to be better in improving the MP and increasing rice yield and could be adopted as a suitable approach for improving soil health, quality, and productivity.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
耕作和水稻栽培方式对中国南方滞煤无烟煤和红土土壤微生物种群的影响
微生物种群(MP)被认为是土壤健康、质量和生产力的一个相对重要的组成部分。因此,本研究旨在了解耕作和水稻栽培模式对停滞无烟煤和红土土MP的影响。处理如下:(i)MDS:用犁板犁翻两次地,用播种机在25×,(ii)RDS:用旋耕机翻两次地,用每山4至6粒种子的直播机在25×,(iii)MMT:用犁板犁翻两次地,用插秧机在4至6株幼苗的插秧山和25×,(iv)RMT:用旋耕机翻耕两次,用插秧机将15天龄的幼苗机械地移植到4至6棵幼苗的插秧山上,插秧间距为25×15cm。结果表明,MDS改善了MP,提高了水稻产量。MDS在两个地点都显示出MP的高增长,曾诚和易阳的水稻生产力分别为32.81%(上半年;第一次收获)和13.91%(下半年;第二次收获)以及16.48%(上半年)和18.13%(下半年)。总之,MDS在改善MP和提高水稻产量方面更好,可以作为改善土壤健康、质量和生产力的合适方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
0
期刊最新文献
Groundwater fluoride prediction modeling using physicochemical parameters in Punjab, India: a machine-learning approach Soil ecology, food systems, and organic waste: the critical network nobody is talking about Long-term fertilization and liming increase soil fertility but reduce carbon stratification and stocks of paddy rice soils Effects of local farming practices on soil organic carbon content, enzymatic activities, and microbial community structure in semi-arid soils of Morocco Rice straw incorporation and Azolla application improves agronomic nitrogen-use-efficiency and rice grain yields in paddy fields
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1