Pub Date : 2023-12-18DOI: 10.3389/fsoil.2023.1268037
Eloise Mason, Antonio Bispo, Mireille Matt, Katharina Helming, Elena Rodriguez, Rocio Lansac, Violeta Carrasco, Mohammad Rafiul Hashar, Loes Verdonk, Gundula Prokop, David Wall, Nancy Francis, Peter Laszlo, Michael Löbmann
Healthy soil is vital for our wellbeing and wealth. However, increasing demand for food and biomass may lead to unsustainable soil and land management practices that threaten soils. Other degradation processes such as soil sealing also endanger soil resources. Identifying and accessing the best available knowledge is crucial to address related sustainability issues and promote the needed transition towards sustainable soil and land management practices. Such knowledge has to cover all knowledge domains, system knowledge, target knowledge, and transformation knowledge. However, a comprehensive overview of existing research addressing societal needs related to soil is still missing, which hinders the identification of knowledge gaps. This study provides a detailed analysis of scientific literature to identify ongoing research activities and trends. A quantitative and qualitative analysis of scientific literature related to sustainable soil and land management was conducted. A systems-oriented analytical framework was used that combines soil and land related societal challenges with related knowledge domains. Our analysis revealed a significant increase in scientific publications and related interest in soil and land use-related research, above the average increase of publications within all scientific fields. Different forms of reduction and remediation of soil degradation processes (e.g. erosion, contamination) have been studied most extensively. Other topic areas like land take mitigation, soil biodiversity increase, increase of ecosystem services provision and climate change mitigation and adaption seem to be rather recent concerns, less investigated. We could highlight the importance of context-specific research, as different regions require different practices. For instance, boreal, tropical, karst and peatland regions were less studied. Furthermore, we found that diversifying soil management practices such as agroforestry or including livestock into arable systems are valuable options for increasing biomass, mitigating/adapting to climate change, and improving soil related ecosystem services. A recent trend towards the latter research topic indicates the transition from a soil conservation-oriented perspective to a soil service-oriented perspective, which may be better suited to integrate the social and economic dimensions of soil health improvement alongside the ecological dimension.
{"title":"Sustainable soil and land management: a systems-oriented overview of scientific literature","authors":"Eloise Mason, Antonio Bispo, Mireille Matt, Katharina Helming, Elena Rodriguez, Rocio Lansac, Violeta Carrasco, Mohammad Rafiul Hashar, Loes Verdonk, Gundula Prokop, David Wall, Nancy Francis, Peter Laszlo, Michael Löbmann","doi":"10.3389/fsoil.2023.1268037","DOIUrl":"https://doi.org/10.3389/fsoil.2023.1268037","url":null,"abstract":"Healthy soil is vital for our wellbeing and wealth. However, increasing demand for food and biomass may lead to unsustainable soil and land management practices that threaten soils. Other degradation processes such as soil sealing also endanger soil resources. Identifying and accessing the best available knowledge is crucial to address related sustainability issues and promote the needed transition towards sustainable soil and land management practices. Such knowledge has to cover all knowledge domains, system knowledge, target knowledge, and transformation knowledge. However, a comprehensive overview of existing research addressing societal needs related to soil is still missing, which hinders the identification of knowledge gaps. This study provides a detailed analysis of scientific literature to identify ongoing research activities and trends. A quantitative and qualitative analysis of scientific literature related to sustainable soil and land management was conducted. A systems-oriented analytical framework was used that combines soil and land related societal challenges with related knowledge domains. Our analysis revealed a significant increase in scientific publications and related interest in soil and land use-related research, above the average increase of publications within all scientific fields. Different forms of reduction and remediation of soil degradation processes (e.g. erosion, contamination) have been studied most extensively. Other topic areas like land take mitigation, soil biodiversity increase, increase of ecosystem services provision and climate change mitigation and adaption seem to be rather recent concerns, less investigated. We could highlight the importance of context-specific research, as different regions require different practices. For instance, boreal, tropical, karst and peatland regions were less studied. Furthermore, we found that diversifying soil management practices such as agroforestry or including livestock into arable systems are valuable options for increasing biomass, mitigating/adapting to climate change, and improving soil related ecosystem services. A recent trend towards the latter research topic indicates the transition from a soil conservation-oriented perspective to a soil service-oriented perspective, which may be better suited to integrate the social and economic dimensions of soil health improvement alongside the ecological dimension.","PeriodicalId":73107,"journal":{"name":"Frontiers in soil science","volume":"145 ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139175416","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-12-01DOI: 10.3389/fsoil.2023.1305105
Raphaël Deragon, Brandon Heung, Nicholas Lefebvre, Kingsley John, A. Cambouris, Jean Caron
The increased adoption of proximal sensors has helped to generate peat mapping products: they gather data quickly and can detect the peat-mineral later boundary. A third layer, made of sedimentary peat (limnic layers, gyttja), can sometimes be found in between them. This material is highly variable spatially and is associated with degraded soil properties when located near the surface.This study aimed to assess the potential of direct current resistivity measurements to predict the maximum peat thickness (MPT), defined as the non-limnic peat thickness, to facilitate soil conservation and management practices at the field-scale. The results were also compared to a regional map of the MPT from a previous study used and also tested as a covariate. This study was conducted in a shallow (MPT = 8-138 cm) cultivated organic soil from Québec, Canada. The MPT was mapped using the apparent electrical conductivity (ECa) from a Veris Q2800, and a digital elevation model, with and without a regional MPT map (RM) as a covariate to downscale it. Three machine-learning algorithms (Cubist, Random Forest, and Support Vector Regression) were compared to ordinary kriging (OK), multiple linear regression, and multiple linear regression kriging (MLRK) models.The best predictive performance was achieved with OK (Lin’s CCC = 0.89, RMSE = 13.75 cm), followed by MLRK-RM (CCC = 0.85, RMSE = 15.7 cm). All models were more accurate than the RM (CCC = 0.65, RMSE = 29.85 cm), although they underpredicted MPT > 100 cm. Moreover, the addition of the RM as a covariate led to a lower prediction error and higher accuracy for all models. Overall, a field-scale approach could better support precision soil conservation interventions by generating more accurate management zones. Future studies should test multi-sensor fusion and other geophysical sensors to further improve the model performance and detect deeper boundaries.
{"title":"Improving a regional peat thickness map using soil apparent electrical conductivity measurements at the field-scale","authors":"Raphaël Deragon, Brandon Heung, Nicholas Lefebvre, Kingsley John, A. Cambouris, Jean Caron","doi":"10.3389/fsoil.2023.1305105","DOIUrl":"https://doi.org/10.3389/fsoil.2023.1305105","url":null,"abstract":"The increased adoption of proximal sensors has helped to generate peat mapping products: they gather data quickly and can detect the peat-mineral later boundary. A third layer, made of sedimentary peat (limnic layers, gyttja), can sometimes be found in between them. This material is highly variable spatially and is associated with degraded soil properties when located near the surface.This study aimed to assess the potential of direct current resistivity measurements to predict the maximum peat thickness (MPT), defined as the non-limnic peat thickness, to facilitate soil conservation and management practices at the field-scale. The results were also compared to a regional map of the MPT from a previous study used and also tested as a covariate. This study was conducted in a shallow (MPT = 8-138 cm) cultivated organic soil from Québec, Canada. The MPT was mapped using the apparent electrical conductivity (ECa) from a Veris Q2800, and a digital elevation model, with and without a regional MPT map (RM) as a covariate to downscale it. Three machine-learning algorithms (Cubist, Random Forest, and Support Vector Regression) were compared to ordinary kriging (OK), multiple linear regression, and multiple linear regression kriging (MLRK) models.The best predictive performance was achieved with OK (Lin’s CCC = 0.89, RMSE = 13.75 cm), followed by MLRK-RM (CCC = 0.85, RMSE = 15.7 cm). All models were more accurate than the RM (CCC = 0.65, RMSE = 29.85 cm), although they underpredicted MPT > 100 cm. Moreover, the addition of the RM as a covariate led to a lower prediction error and higher accuracy for all models. Overall, a field-scale approach could better support precision soil conservation interventions by generating more accurate management zones. Future studies should test multi-sensor fusion and other geophysical sensors to further improve the model performance and detect deeper boundaries.","PeriodicalId":73107,"journal":{"name":"Frontiers in soil science","volume":"7 15","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138625268","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-11-17DOI: 10.3389/fsoil.2023.1267685
Deirdre Griffin‐LaHue, Daoyuan Wang, Amélie C. M. Gaudin, Blythe Durbin-Johnson, Matthew L. Settles, K. Scow
Irrigation management dramatically alters soil water availability and distribution and could impact soil microbial communities and carbon (C) and nitrogen (N) cycling to an even greater degree than observed in rainfed systems. Adoption of subsurface drip irrigation (SDI) in California’s Mediterranean agroecosystems provides agronomic benefits but wets only a portion of the soil volume near the root zone, leaving the rest dry throughout the growing season. In contrast, traditional furrow irrigation (FI) has periodic wetting events with more homogenous moisture distribution. With conversion to precision irrigation methods, how will the microbiome respond to changes moisture availability, and how is their response influenced by soil C and N resource levels?In a field experiment in California, we compared SDI and FI’s effects on microbial communities and evaluated how long-term organic and conventional management systems impact outcomes. Throughout the growing season, soil samples were collected at two depths (0-15, 15-30 cm) and three distances from bed center (10, 25, 45 cm) where the drip tape is located.At harvest, soils irrigated using SDI had lower microbial biomass C (MBC) than under FI at the surface and showed a build-up of soluble C and N relative to MBC at the bed edge, indicating reduced microbial uptake. Community composition at the bed edge also diverged between SDI and FI, favoring Actinobacteria in the former and Acidobacteria and Gemmatimonadetes in the latter. Regardless of irrigation type, dry areas of the bed had the highest alpha diversity indices. Response to SDI was similar in organic and conventional systems, though organic had higher MBC, DOC, and relative abundance of Proteobacteria and fungal lipids, regardless of irrigation.Prolonged dry conditions in SDI appeared to limit microbial access to resources and changed community composition. As seen in non-agricultural systems, the severity and frequency of moisture changes, adaptation of the communities, and resource availability affect microbial response. Decoupling of C and N pools in dry surface soils under SDI may increase the potential for losses of DOC and nitrate with the first winter rains in this Mediterranean climate.
灌溉管理极大地改变了土壤水分的供应和分布,并可能对土壤微生物群落以及碳(C)和氮(N)循环产生影响,其程度甚至超过在雨水灌溉系统中观察到的影响。在加利福尼亚的地中海农业生态系统中采用地表下滴灌(SDI)可带来农艺效益,但只能湿润根区附近的部分土壤,其余部分在整个生长季节都处于干燥状态。相比之下,传统的沟灌(FI)具有周期性湿润的特点,水分分布更均匀。在加利福尼亚州的一项田间试验中,我们比较了 SDI 和 FI 对微生物群落的影响,并评估了长期有机和常规管理系统对结果的影响。在整个生长季节,我们在两个深度(0-15 厘米、15-30 厘米)和距离床中心滴灌带的三个距离(10 厘米、25 厘米、45 厘米)采集了土壤样本。收获时,使用 SDI 灌溉的土壤表面的微生物生物量 C(MBC)低于使用 FI 灌溉的土壤,而且相对于床边的 MBC,床边的可溶性 C 和 N 有所增加,这表明微生物的吸收减少了。在 SDI 和灌溉条件下,床边的群落组成也有所不同,前者偏向于放线菌,后者偏向于酸性杆菌和宝石花菌。无论灌溉类型如何,河床的干燥区域具有最高的阿尔法多样性指数。有机系统和常规系统对 SDI 的反应相似,但有机系统的 MBC、DOC 以及变形菌和真菌脂质的相对丰度更高,与灌溉类型无关。正如在非农业系统中看到的那样,湿度变化的严重程度和频率、群落的适应性以及资源的可用性都会影响微生物的反应。在 SDI 条件下,干燥表层土壤中的碳库和氮库脱钩可能会增加地中海气候下第一场冬雨时 DOC 和硝酸盐损失的可能性。
{"title":"Extended soil surface drying triggered by subsurface drip irrigation decouples carbon and nitrogen cycles and alters microbiome composition","authors":"Deirdre Griffin‐LaHue, Daoyuan Wang, Amélie C. M. Gaudin, Blythe Durbin-Johnson, Matthew L. Settles, K. Scow","doi":"10.3389/fsoil.2023.1267685","DOIUrl":"https://doi.org/10.3389/fsoil.2023.1267685","url":null,"abstract":"Irrigation management dramatically alters soil water availability and distribution and could impact soil microbial communities and carbon (C) and nitrogen (N) cycling to an even greater degree than observed in rainfed systems. Adoption of subsurface drip irrigation (SDI) in California’s Mediterranean agroecosystems provides agronomic benefits but wets only a portion of the soil volume near the root zone, leaving the rest dry throughout the growing season. In contrast, traditional furrow irrigation (FI) has periodic wetting events with more homogenous moisture distribution. With conversion to precision irrigation methods, how will the microbiome respond to changes moisture availability, and how is their response influenced by soil C and N resource levels?In a field experiment in California, we compared SDI and FI’s effects on microbial communities and evaluated how long-term organic and conventional management systems impact outcomes. Throughout the growing season, soil samples were collected at two depths (0-15, 15-30 cm) and three distances from bed center (10, 25, 45 cm) where the drip tape is located.At harvest, soils irrigated using SDI had lower microbial biomass C (MBC) than under FI at the surface and showed a build-up of soluble C and N relative to MBC at the bed edge, indicating reduced microbial uptake. Community composition at the bed edge also diverged between SDI and FI, favoring Actinobacteria in the former and Acidobacteria and Gemmatimonadetes in the latter. Regardless of irrigation type, dry areas of the bed had the highest alpha diversity indices. Response to SDI was similar in organic and conventional systems, though organic had higher MBC, DOC, and relative abundance of Proteobacteria and fungal lipids, regardless of irrigation.Prolonged dry conditions in SDI appeared to limit microbial access to resources and changed community composition. As seen in non-agricultural systems, the severity and frequency of moisture changes, adaptation of the communities, and resource availability affect microbial response. Decoupling of C and N pools in dry surface soils under SDI may increase the potential for losses of DOC and nitrate with the first winter rains in this Mediterranean climate.","PeriodicalId":73107,"journal":{"name":"Frontiers in soil science","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139265028","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-11-09DOI: 10.3389/fsoil.2023.1285964
Karolane Bourdon, Josée Fortin, Jacynthe Dessureault-Rompré, Christophe Libbrecht, Jean Caron
Repeated applications of straw and wood chips were recently proposed as a conservation strategy for preserving cultivated peatland carbon (C) stock. However, the variability in the amendment biostability and the possible divergent responses of contrasting peat soils need to be assessed. This study investigated the effect of amendment with different plant materials on carbon dioxide (CO2) emissions from two contrasting peat soils (sapric and hemic) in two laboratory experiments. The sapric soil received one application of plant materials and was incubated for 3190 degree-days (145 days at 22°C), while the hemic soil received three successive applications of plant materials and was incubated for three successive periods of 3150 degree-days (126 days at 25°C). CO2 emissions were measured at time intervals ranging from 2 to 14 days and the apparent proportion of the plant material’s C remaining in the soil was modeled using an exponential decay function. CO2 emissions from the 0-25 cm horizon of the unamended peats represented 0.7 t C-CO2 ha-1 yr-1 in the sapric soil and 7.3, 1.1, and 0.5 t C-CO2 ha-1 yr-1 in the hemic soil for the first, second, and third amendment periods, respectively. The apparent remaining C of the plant material varied from 52% to 81% in the two experiments, resulting in biomass requirements ranging from 2 to 32 t ha-1. The apparent remaining C was from 26% to 36% higher in the sapric soil than in the hemic soil. The apparent remaining C was also 9% to 38% higher for the treated softwoods than the untreated materials (straws: miscanthus, switchgrass, sorghum; wood chips: willow, birch). The repeated application of straw and wood chips increased CO2 emissions in the first 35 days following each application, resulting in an increased decomposition rate for the tested model. However, no change was detected for the final apparent remaining C across the three applications. These findings highlight the importance of considering soil properties, material types, and the impact of repeated applications for designing effective amendment programs and accurate C projection models for cultivated peatlands.
秸秆和木屑的重复施用被认为是保护泥炭地碳储量的一种保护策略。然而,在修正生物稳定性的变异性和不同泥炭土可能的不同反应需要评估。本研究在两个实验室实验中研究了不同植物材料对两种不同泥炭土(含盐酸盐和含盐酸盐)二氧化碳排放的影响。含盐量土壤连续施用1次植物材料,培养3190度(22℃下145天);含盐量土壤连续施用3次植物材料,连续培养3次,培养3150度(25℃下126天)。每隔2天至14天测量一次二氧化碳排放量,并使用指数衰减函数对植物材料中碳在土壤中残留的表观比例进行建模。在第一次、第二次和第三次修正期间,未修正泥炭地0-25 cm层的CO 2排放量分别为:甜土的0.7 t C-CO 2 ha -1 yr -1和化学土的7.3、1.1和0.5 t C-CO 2 ha -1 yr -1。在两个试验中,植物材料的表观剩余C在52% ~ 81%之间变化,导致生物量需求在2 ~ 32 t ha -1之间。盐碱土壤的表观剩余碳含量比化学土壤高26% ~ 36%。处理过的软木的表观剩余碳含量也比未处理的材料(秸秆:芒草、柳枝稷、高粱;木屑:柳木、桦木)。重复施用秸秆和木屑在每次施用后的前35天内增加了二氧化碳排放量,导致被测模型的分解率增加。但是,在三个应用程序中,没有检测到最后的明显剩余C的变化。这些发现强调了考虑土壤性质、物质类型和重复应用对设计有效的改良方案和精确的C投影模型的重要性。
{"title":"Mitigating CO2 emissions from cultivated peatlands: Efficiency of straws and wood chips applications in maintaining carbon stock in two contrasting soils","authors":"Karolane Bourdon, Josée Fortin, Jacynthe Dessureault-Rompré, Christophe Libbrecht, Jean Caron","doi":"10.3389/fsoil.2023.1285964","DOIUrl":"https://doi.org/10.3389/fsoil.2023.1285964","url":null,"abstract":"Repeated applications of straw and wood chips were recently proposed as a conservation strategy for preserving cultivated peatland carbon (C) stock. However, the variability in the amendment biostability and the possible divergent responses of contrasting peat soils need to be assessed. This study investigated the effect of amendment with different plant materials on carbon dioxide (CO2) emissions from two contrasting peat soils (sapric and hemic) in two laboratory experiments. The sapric soil received one application of plant materials and was incubated for 3190 degree-days (145 days at 22°C), while the hemic soil received three successive applications of plant materials and was incubated for three successive periods of 3150 degree-days (126 days at 25°C). CO2 emissions were measured at time intervals ranging from 2 to 14 days and the apparent proportion of the plant material’s C remaining in the soil was modeled using an exponential decay function. CO2 emissions from the 0-25 cm horizon of the unamended peats represented 0.7 t C-CO2 ha-1 yr-1 in the sapric soil and 7.3, 1.1, and 0.5 t C-CO2 ha-1 yr-1 in the hemic soil for the first, second, and third amendment periods, respectively. The apparent remaining C of the plant material varied from 52% to 81% in the two experiments, resulting in biomass requirements ranging from 2 to 32 t ha-1. The apparent remaining C was from 26% to 36% higher in the sapric soil than in the hemic soil. The apparent remaining C was also 9% to 38% higher for the treated softwoods than the untreated materials (straws: miscanthus, switchgrass, sorghum; wood chips: willow, birch). The repeated application of straw and wood chips increased CO2 emissions in the first 35 days following each application, resulting in an increased decomposition rate for the tested model. However, no change was detected for the final apparent remaining C across the three applications. These findings highlight the importance of considering soil properties, material types, and the impact of repeated applications for designing effective amendment programs and accurate C projection models for cultivated peatlands.","PeriodicalId":73107,"journal":{"name":"Frontiers in soil science","volume":" 41","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135291803","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-11-02DOI: 10.3389/fsoil.2023.1209100
M. A. N. Anikwe, K Ife
The concept of a circular bioeconomy focuses on the sustainable use of biological resources, minimizing waste and negative environmental impacts. Soil ecosystem services are crucial in this context as they support agricultural production, biodiversity conservation, and nutrient recycling. The circular bioeconomy offers benefits like resource efficiency, reduced waste, lower environmental impacts, and economic opportunities, with soil ecosystem services playing a significant role in achieving these benefits. Soil provides various services for human well-being, including security, protection from ecological shocks, access to balanced diets, clean water, clean air, and energy for temperature control. This review highlights the importance of soil ecosystem services in circular resource management and bio-based sustainable production systems. These services encompass provisioning, regulating, cultural, and supporting roles, providing resources like food, fibre, and fuel, controlling erosion and temperature, offering aesthetic value, and sustaining plant and animal diversity. The bioeconomy comprises knowledge, research, technology, and innovation related to biological resource production, use, conservation, and regeneration. The application of circular bioeconomy strategies benefits from the ecological services soil provides to bio-based industries. The policy that converts farming, grazing, and woodland systems into renewable operations is bound to protect soil functions while relieving pressure on other critical ecosystem functions. Overall, a holistic understanding of soil ecosystem services is crucial for successfully implementing circular practices across different bioeconomy sectors. Soil conservation, sustainable management, and the protection of soil resources are vital for maintaining the services that support a circular bioeconomy.
{"title":"The role of soil ecosystem services in the circular bioeconomy","authors":"M. A. N. Anikwe, K Ife","doi":"10.3389/fsoil.2023.1209100","DOIUrl":"https://doi.org/10.3389/fsoil.2023.1209100","url":null,"abstract":"The concept of a circular bioeconomy focuses on the sustainable use of biological resources, minimizing waste and negative environmental impacts. Soil ecosystem services are crucial in this context as they support agricultural production, biodiversity conservation, and nutrient recycling. The circular bioeconomy offers benefits like resource efficiency, reduced waste, lower environmental impacts, and economic opportunities, with soil ecosystem services playing a significant role in achieving these benefits. Soil provides various services for human well-being, including security, protection from ecological shocks, access to balanced diets, clean water, clean air, and energy for temperature control. This review highlights the importance of soil ecosystem services in circular resource management and bio-based sustainable production systems. These services encompass provisioning, regulating, cultural, and supporting roles, providing resources like food, fibre, and fuel, controlling erosion and temperature, offering aesthetic value, and sustaining plant and animal diversity. The bioeconomy comprises knowledge, research, technology, and innovation related to biological resource production, use, conservation, and regeneration. The application of circular bioeconomy strategies benefits from the ecological services soil provides to bio-based industries. The policy that converts farming, grazing, and woodland systems into renewable operations is bound to protect soil functions while relieving pressure on other critical ecosystem functions. Overall, a holistic understanding of soil ecosystem services is crucial for successfully implementing circular practices across different bioeconomy sectors. Soil conservation, sustainable management, and the protection of soil resources are vital for maintaining the services that support a circular bioeconomy.","PeriodicalId":73107,"journal":{"name":"Frontiers in soil science","volume":"179 4","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135974878","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-10-09DOI: 10.3389/fsoil.2023.1200847
Lukas M. Hallman, John M. Santiago, John-Paul Fox, Marco Pitino, Robert G. Shatters, Lorenzo Rossi
Introduction Improving soil fertility is a top priority in Florida’s citrus growing regions, especially in the age of Huanglongbing (HLB; also known as citrus greening). This disease severely reduces fine root mass, causes higher incidences of nutrient deficiencies, and eventually results in the death of affected trees. Additionally, the soils commonly found in Florida’s citrus growing regions are sandy (greater than 98%) and naturally low in fertility, making the nutrient management of HLB-affected trees even more challenging. As a result, interest in organic amendments to increase soil fertility are being tested. Although hardwood chip mulches are successfully used in other regions of the country, no studies exist observing their use on the soils in Florida’s citrus growing regions; therefore, the objectives of this study were to measure the impacts of hardwood oak mulch on (i) Florida Alfisols characteristics and (ii) HLB-affected citrus trees. Methods A two-treatment field study using 6-year-old ‘Valencia’ sweet orange trees ( Citrus × sinensis ) grafted on US-812 ( C. reticulata × C. trifoliata ) rootstock was conducted in Florida’s Indian River District (IRD). The experimental treatment consisted of 0.08 m of hardwood chip mulch sourced from oak trees applied every September for 3 years (2020, 2021, and 2022) while the control treatment had no mulch applied. Soil chemical and physical properties, leaf nutrient concentration, and leaf Candidatus Liberibacter asiaticus ( C Las) titer was collected in the fall (October), winter (January), spring (April), and summer (July). Results and discussion Overall, after 3 years, oak mulch applications increased soil available phosphorus (32%), potassium (66%), magnesium (71%), organic matter (49%), and moisture (25-88%, depending on the season); however, oak mulch inconsistently impacted leaf nutrient concentrations and was not effective at suppressing HLB. The results show that annual applications of hardwood oak mulch can improve the chemical and physical properties of sandy soils within three years, however, these improvements did not reduce the severity of HLB.
提高土壤肥力是佛罗里达州柑橘产区的首要任务,特别是在黄龙冰(HLB;也被称为柑橘绿化)。这种疾病严重减少细根质量,造成营养缺乏的较高发生率,并最终导致受影响树木的死亡。此外,佛罗里达州柑橘种植区的土壤通常是沙质的(大于98%),肥力自然较低,这使得受hlb影响的树木的养分管理更具挑战性。因此,人们对提高土壤肥力的有机改良剂的兴趣正在受到考验。尽管硬木片地膜在美国其他地区已经成功使用,但没有研究观察它们在佛罗里达州柑橘种植区的土壤上的使用情况;因此,本研究的目的是测量硬木橡木覆盖对(i)佛罗里达Alfisols特性和(ii)受hlb影响的柑橘树的影响。方法在美国佛罗里达州印第安河区(IRD)进行6年生‘瓦伦西亚’甜橙树(Citrus x sinensis)嫁接US-812 (C. reticulata × C. trifoliata)砧木的田间试验。试验处理包括每年9月覆盖0.08米的橡树硬木片地膜,为期3年(2020年、2021年和2022年),而对照处理不覆盖地膜。分别于秋季(10月)、冬季(1月)、春季(4月)和夏季(7月)采集土壤理化性质、叶片养分浓度和叶片亚洲解放候选菌(C Las)滴度。总体而言,3年后,橡木覆盖增加了土壤有效磷(32%)、钾(66%)、镁(71%)、有机质(49%)和水分(25-88%,具体取决于季节);然而,橡木覆盖对叶片养分浓度的影响不一致,对抑制HLB没有效果。结果表明:在3年内,每年施用阔叶栎树地膜可改善沙质土壤的理化性质,但并不能降低沙质土壤的严重程度。
{"title":"Use of hardwood mulch applications to improve soil characteristics of Alfisols used in Florida citrus production","authors":"Lukas M. Hallman, John M. Santiago, John-Paul Fox, Marco Pitino, Robert G. Shatters, Lorenzo Rossi","doi":"10.3389/fsoil.2023.1200847","DOIUrl":"https://doi.org/10.3389/fsoil.2023.1200847","url":null,"abstract":"Introduction Improving soil fertility is a top priority in Florida’s citrus growing regions, especially in the age of Huanglongbing (HLB; also known as citrus greening). This disease severely reduces fine root mass, causes higher incidences of nutrient deficiencies, and eventually results in the death of affected trees. Additionally, the soils commonly found in Florida’s citrus growing regions are sandy (greater than 98%) and naturally low in fertility, making the nutrient management of HLB-affected trees even more challenging. As a result, interest in organic amendments to increase soil fertility are being tested. Although hardwood chip mulches are successfully used in other regions of the country, no studies exist observing their use on the soils in Florida’s citrus growing regions; therefore, the objectives of this study were to measure the impacts of hardwood oak mulch on (i) Florida Alfisols characteristics and (ii) HLB-affected citrus trees. Methods A two-treatment field study using 6-year-old ‘Valencia’ sweet orange trees ( Citrus × sinensis ) grafted on US-812 ( C. reticulata × C. trifoliata ) rootstock was conducted in Florida’s Indian River District (IRD). The experimental treatment consisted of 0.08 m of hardwood chip mulch sourced from oak trees applied every September for 3 years (2020, 2021, and 2022) while the control treatment had no mulch applied. Soil chemical and physical properties, leaf nutrient concentration, and leaf Candidatus Liberibacter asiaticus ( C Las) titer was collected in the fall (October), winter (January), spring (April), and summer (July). Results and discussion Overall, after 3 years, oak mulch applications increased soil available phosphorus (32%), potassium (66%), magnesium (71%), organic matter (49%), and moisture (25-88%, depending on the season); however, oak mulch inconsistently impacted leaf nutrient concentrations and was not effective at suppressing HLB. The results show that annual applications of hardwood oak mulch can improve the chemical and physical properties of sandy soils within three years, however, these improvements did not reduce the severity of HLB.","PeriodicalId":73107,"journal":{"name":"Frontiers in soil science","volume":"54 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135141355","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-10-06DOI: 10.3389/fsoil.2023.1159793
Serena Santolamazza-Carbone, Laura Iglesias-Bernabé, Mariana Landin, Elena Benito Rueda, M. Esther Barreal, Pedro Pablo Gallego
The main objective of this study was to determine the possible interaction of two important abiotic factors (soil and climate) on the mycelial concentration and frequency of the ectomycorrhizal fungi Boletus edulis and B. reticulatus , using traditional statistics and artificial neural network tools. The frequency and concentration of Boletus mycelium were determined over three months (September, October, and November), and two years (2018 and 2020), in three hybrid chestnuts ( Castanea × coudercii) orchards of 40-, 10-, and 3- years-old, using real-time qPCR. Statistical analysis revealed a significant effect of the year on B. edulis mycelium concentration and of the sampling plot (different tree ages) on B. reticulatus frequency. The combination of artificial intelligence networks (ANN) with fuzzy logic, named neurofuzzy logic (NF), allowed the construction of two robust models. In the first, using year, month, and sampling plot as inputs, NF identified hidden interactions between year and month on B. edulis mycelium concentration and between sampling plot and sampling month on B. reticulatus mycelium frequency, thus improving the information obtained from the statistical analysis. In the second model, those three factors were disaggregated into 44 inputs, including 20 soil properties and 24 climatic factors, being NF able to select only 8 as critical factors to explain the variability found in both ectomycorrhizal Boletus species regarding mycelial frequency and concentration. Specifically, NF selected two chemical soil properties (cation exchange capacity and total carbon) and three physical properties (macroaggregates, total porosity, and soil moisture at field capacity), as well as their interactions with three climatic elements (cumulative difference between precipitation and potential evapotranspiration (P-PET-1-2) and water deficit (WD-1-2) in the previous two months and excess water (WE-1) in the month prior to sampling. These results provide a much deeper understanding and new insights into the ecology and the role of abiotic factors which explain the different mycelial development patterns of ectomycorrhizal fungi such as B. edulis and B. reticulatus in chestnut agroecosystems.
{"title":"Artificial intelligence unveils key interactions between soil properties and climate factors on Boletus edulis and B. reticulatus mycelium in chestnut orchards of different ages","authors":"Serena Santolamazza-Carbone, Laura Iglesias-Bernabé, Mariana Landin, Elena Benito Rueda, M. Esther Barreal, Pedro Pablo Gallego","doi":"10.3389/fsoil.2023.1159793","DOIUrl":"https://doi.org/10.3389/fsoil.2023.1159793","url":null,"abstract":"The main objective of this study was to determine the possible interaction of two important abiotic factors (soil and climate) on the mycelial concentration and frequency of the ectomycorrhizal fungi Boletus edulis and B. reticulatus , using traditional statistics and artificial neural network tools. The frequency and concentration of Boletus mycelium were determined over three months (September, October, and November), and two years (2018 and 2020), in three hybrid chestnuts ( Castanea × coudercii) orchards of 40-, 10-, and 3- years-old, using real-time qPCR. Statistical analysis revealed a significant effect of the year on B. edulis mycelium concentration and of the sampling plot (different tree ages) on B. reticulatus frequency. The combination of artificial intelligence networks (ANN) with fuzzy logic, named neurofuzzy logic (NF), allowed the construction of two robust models. In the first, using year, month, and sampling plot as inputs, NF identified hidden interactions between year and month on B. edulis mycelium concentration and between sampling plot and sampling month on B. reticulatus mycelium frequency, thus improving the information obtained from the statistical analysis. In the second model, those three factors were disaggregated into 44 inputs, including 20 soil properties and 24 climatic factors, being NF able to select only 8 as critical factors to explain the variability found in both ectomycorrhizal Boletus species regarding mycelial frequency and concentration. Specifically, NF selected two chemical soil properties (cation exchange capacity and total carbon) and three physical properties (macroaggregates, total porosity, and soil moisture at field capacity), as well as their interactions with three climatic elements (cumulative difference between precipitation and potential evapotranspiration (P-PET-1-2) and water deficit (WD-1-2) in the previous two months and excess water (WE-1) in the month prior to sampling. These results provide a much deeper understanding and new insights into the ecology and the role of abiotic factors which explain the different mycelial development patterns of ectomycorrhizal fungi such as B. edulis and B. reticulatus in chestnut agroecosystems.","PeriodicalId":73107,"journal":{"name":"Frontiers in soil science","volume":"33 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135351085","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-09-22DOI: 10.3389/fsoil.2023.1283367
Mark D. McDonald, Katie L. Lewis, Paul B. DeLaune, Brian A. Hux, Thomas W. Boutton, Terry J. Gentry
Corrigendum on: McDonald, M.D., Lewis, K.L., Delaune, P.B., Hux, B.A., Boutton, T.W., and Gentry, T.J. (2023). Nitrogen fertilizer driven nitrous and nitric oxide production is decoupled from microbial genetic potential in low carbon, semi-arid soil. Frontiers in Soil Science 2.Additional Affiliation(s)In the published article, there was an error regarding the affiliations for Mark D. McDonald. As well as having affiliations 1,2 they should also have Argonne National Laboratory, Lemont, IL, 60439, USA.The authors apologize for this error and state that this does not change the scientific conclusions of the article in any way. The original article has been updated.Error in Figure/TableIn the published article, there was an error in Table 1 as published. The primer sequences for the Target group 16S rRNA (Eub338: ATCATGGTSCTGCCGCG; Eub518: GCCTCGATCAGRTTGTGGTT) are incorrect. In addition, primer references for all target groups were incorrect in the final version of the manuscript. The corrected Table 1 and its caption Primer sequences and thermal profiles for total bacterial and bacterial N-cycle functional gene abundances appear below. The authors apologize for this error and state that this does not change the scientific conclusions of the article in any way. The original article has been updated.
更正:McDonald, m.d., Lewis, k.l., Delaune, p.b., Hux, b.a., Boutton, t.w.和Gentry, T.J.(2023)。在低碳半干旱土壤中,氮肥驱动的氮和一氧化氮生产与微生物遗传潜力脱钩。土壤科学前沿2。在发表的文章中,关于Mark D. McDonald的隶属关系有一个错误。除了拥有附属机构1,2,他们还应该拥有阿贡国家实验室,Lemont, IL, 60439, USA。作者为这个错误道歉,并声明这不会以任何方式改变文章的科学结论。原文已更新。在发表的文章中,发表的表1中有一个错误。目的组16S rRNA引物序列(Eub338: ATCATGGTSCTGCCGCG;Eub518: GCCTCGATCAGRTTGTGGTT)是不正确的。此外,在手稿的最终版本中,所有目标群体的引物参考文献都不正确。修正后的表1及其标题引物序列和细菌总丰度和细菌n环功能基因丰度的热谱如下所示。作者为这个错误道歉,并声明这不会以任何方式改变文章的科学结论。原文已更新。
{"title":"Corrigendum: Nitrogen fertilizer driven nitrous and nitric oxide production is decoupled from microbial genetic potential in low carbon, semi-arid soil","authors":"Mark D. McDonald, Katie L. Lewis, Paul B. DeLaune, Brian A. Hux, Thomas W. Boutton, Terry J. Gentry","doi":"10.3389/fsoil.2023.1283367","DOIUrl":"https://doi.org/10.3389/fsoil.2023.1283367","url":null,"abstract":"Corrigendum on: McDonald, M.D., Lewis, K.L., Delaune, P.B., Hux, B.A., Boutton, T.W., and Gentry, T.J. (2023). Nitrogen fertilizer driven nitrous and nitric oxide production is decoupled from microbial genetic potential in low carbon, semi-arid soil. Frontiers in Soil Science 2.Additional Affiliation(s)In the published article, there was an error regarding the affiliations for Mark D. McDonald. As well as having affiliations 1,2 they should also have Argonne National Laboratory, Lemont, IL, 60439, USA.The authors apologize for this error and state that this does not change the scientific conclusions of the article in any way. The original article has been updated.Error in Figure/TableIn the published article, there was an error in Table 1 as published. The primer sequences for the Target group 16S rRNA (Eub338: ATCATGGTSCTGCCGCG; Eub518: GCCTCGATCAGRTTGTGGTT) are incorrect. In addition, primer references for all target groups were incorrect in the final version of the manuscript. The corrected Table 1 and its caption Primer sequences and thermal profiles for total bacterial and bacterial N-cycle functional gene abundances appear below. The authors apologize for this error and state that this does not change the scientific conclusions of the article in any way. The original article has been updated.","PeriodicalId":73107,"journal":{"name":"Frontiers in soil science","volume":"22 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136016990","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-09-12DOI: 10.3389/fsoil.2023.1208909
Honoré Tekeu, Thomas Jeanne, Joël D’Astous-Pagé, Richard Hogue
Introduction and methods As part of a study on control methods of common scab disease impact on potato yield and quality, high-throughput sequencing was used to measure the effects of soil fumigant chloropicrin alone or in combination with a Bacillus species-based biostimulant on soil bacterial diversity in terms of richness and composition, as well as on soil bacterial network interactions. Results and discussion The results showed that common scab caused significant net yield losses of more than 46.25% in potatoes of control plots (T1), while the use of the fumigant alone (T3) and the use of the fumigant with the biostimulant (T4) reduced net yield losses to less than 2.5%. These treatments also promoted gross yield increases of 23.5 cwt. acre -1 (7.06%) and 28 cwt. acre -1 (8.41%) respectively. The study found that using the soil fumigant chloropicrin significantly and persistently altered the composition of the soil bacterial community over the growing season. The modifications of the soil bacterial community induced by the inoculation of the Bacillus species-based biostimulant are distinct by the end of the growing season depending on whether the soil has been fumigated (T4) or not (T2). Interestingly, artificial network inference analysis showed that the T2 treatment had the highest number of edges and linkages, contrary to the T3 treatment that had the lowest number of edges and linkages. The fumigation alone treatment leads to a reduction in interactions, while the application of the biostimulant, in both non-fumigated and fumigated soil, results in increased interactions and a higher number of connections within a phylum or between different taxa. Furthermore, the treatment combining the fumigant and the biostimulant exhibits a moderate increase in various network properties, providing evidence for the positive effect of biostimulant inoculation on bacterial communities in fumigated soils. Our results provide a more detailed understanding of the bacterial community structure and diversity in the soil of the different treatments. Moreover, deciphering network interactions in soil bacterial communities is fundamentally important for research in soil microbial ecology of potato cropping systems.
{"title":"Artificial network inference analysis reveals the impact of biostimulant on bacterial communities in fumigated soil for potato production against common scab","authors":"Honoré Tekeu, Thomas Jeanne, Joël D’Astous-Pagé, Richard Hogue","doi":"10.3389/fsoil.2023.1208909","DOIUrl":"https://doi.org/10.3389/fsoil.2023.1208909","url":null,"abstract":"Introduction and methods As part of a study on control methods of common scab disease impact on potato yield and quality, high-throughput sequencing was used to measure the effects of soil fumigant chloropicrin alone or in combination with a Bacillus species-based biostimulant on soil bacterial diversity in terms of richness and composition, as well as on soil bacterial network interactions. Results and discussion The results showed that common scab caused significant net yield losses of more than 46.25% in potatoes of control plots (T1), while the use of the fumigant alone (T3) and the use of the fumigant with the biostimulant (T4) reduced net yield losses to less than 2.5%. These treatments also promoted gross yield increases of 23.5 cwt. acre -1 (7.06%) and 28 cwt. acre -1 (8.41%) respectively. The study found that using the soil fumigant chloropicrin significantly and persistently altered the composition of the soil bacterial community over the growing season. The modifications of the soil bacterial community induced by the inoculation of the Bacillus species-based biostimulant are distinct by the end of the growing season depending on whether the soil has been fumigated (T4) or not (T2). Interestingly, artificial network inference analysis showed that the T2 treatment had the highest number of edges and linkages, contrary to the T3 treatment that had the lowest number of edges and linkages. The fumigation alone treatment leads to a reduction in interactions, while the application of the biostimulant, in both non-fumigated and fumigated soil, results in increased interactions and a higher number of connections within a phylum or between different taxa. Furthermore, the treatment combining the fumigant and the biostimulant exhibits a moderate increase in various network properties, providing evidence for the positive effect of biostimulant inoculation on bacterial communities in fumigated soils. Our results provide a more detailed understanding of the bacterial community structure and diversity in the soil of the different treatments. Moreover, deciphering network interactions in soil bacterial communities is fundamentally important for research in soil microbial ecology of potato cropping systems.","PeriodicalId":73107,"journal":{"name":"Frontiers in soil science","volume":"35 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135886287","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-08-21DOI: 10.3389/fsoil.2023.1233886
Paulina B. Ramírez, S. Machado, Surendra Singh, Rachael Plunkett, F. Calderón
Soil organic carbon (SOC) is considered a significant contributor to soil water retention. However, generalizations about the role of SOC in available water-holding capacity (AWHC) may have inaccurately portrayed this relationship. We aim to reexamine the relationship between SOC and water retention using the National Cooperative Soil Survey (NCSS) Database. We focus on regional soil groups within the Pacific Northwest wheat production region, including Haploxerolls, Argixerolls, Haplocambids, and Durixerolls. We evaluated 77 sites based on SOC, total nitrogen (TN), pH, texture, bulk density (BD), field capacity (FC), permanent wilting point (PWP), and AWHC. Our findings indicate that texture and BD were the most significant contributors to AWHC variation, while SOC played a secondary role in explaining this variation. Mid-infrared (MIR) spectroscopy coupled with a random forest (RF) algorithm was used to evaluate the importance of spectral bands in determining changes in FC and PWP. This analysis identified mineral bands related to inner-surface hydroxyl groups in kaolinite (3700 cm −1) and Si-O-Si overtones (1870 cm −1) as the most important spectral contributors to PWP. The water retention at FC was associated with organic absorbances relevant to soil aggregation, such as polysaccharide C–O (~1035 cm −1), while mineral bands were relatively less influential. This study highlights the need to reexamine the impact of SOC as well as the interaction between soil texture and compaction on soil water retention to elucidate the underlying mechanisms responsible for AWHC, thus providing insight into future drought adaptation strategies.
{"title":"Addressing the effects of soil organic carbon on water retention in US Pacific Northwest wheat–soil systems","authors":"Paulina B. Ramírez, S. Machado, Surendra Singh, Rachael Plunkett, F. Calderón","doi":"10.3389/fsoil.2023.1233886","DOIUrl":"https://doi.org/10.3389/fsoil.2023.1233886","url":null,"abstract":"Soil organic carbon (SOC) is considered a significant contributor to soil water retention. However, generalizations about the role of SOC in available water-holding capacity (AWHC) may have inaccurately portrayed this relationship. We aim to reexamine the relationship between SOC and water retention using the National Cooperative Soil Survey (NCSS) Database. We focus on regional soil groups within the Pacific Northwest wheat production region, including Haploxerolls, Argixerolls, Haplocambids, and Durixerolls. We evaluated 77 sites based on SOC, total nitrogen (TN), pH, texture, bulk density (BD), field capacity (FC), permanent wilting point (PWP), and AWHC. Our findings indicate that texture and BD were the most significant contributors to AWHC variation, while SOC played a secondary role in explaining this variation. Mid-infrared (MIR) spectroscopy coupled with a random forest (RF) algorithm was used to evaluate the importance of spectral bands in determining changes in FC and PWP. This analysis identified mineral bands related to inner-surface hydroxyl groups in kaolinite (3700 cm −1) and Si-O-Si overtones (1870 cm −1) as the most important spectral contributors to PWP. The water retention at FC was associated with organic absorbances relevant to soil aggregation, such as polysaccharide C–O (~1035 cm −1), while mineral bands were relatively less influential. This study highlights the need to reexamine the impact of SOC as well as the interaction between soil texture and compaction on soil water retention to elucidate the underlying mechanisms responsible for AWHC, thus providing insight into future drought adaptation strategies.","PeriodicalId":73107,"journal":{"name":"Frontiers in soil science","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48797992","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}