Genome editing based on CRISPR/CAS systems: beginning of a new era of genetic manipulation and inheritance

J. S. Toledo
{"title":"Genome editing based on CRISPR/CAS systems: beginning of a new era of genetic manipulation and inheritance","authors":"J. S. Toledo","doi":"10.15406/jmen.2019.07.00231","DOIUrl":null,"url":null,"abstract":"In 2002, Ruud Jansen of Utrecht University found a 21-37 bp interspaced short sequence repeats distinctly spaced among several bacterial species, such as, Salmonella typhimurium (21bp) and Streptococcus pyogenes (37bp). Jansen’s team found that CRISPRs were unique to certain prokaryotes and not viruses and eukaryotes. Moreover, they identified a common sequence, GTT/AAC, at the ends and a long homologous sequence along the upstream without an open reading frame, indicating a conserved ncRNA segment. Their findings were similar to that of Ishino and Mojica, and they have referred the phenomenon as Clustered Regularly Interspaced Short Palindormic Repeats (CRISPR). The biological meaning of CRISPR remained obscure until 2005, when Pourcel, Mojica and Bolotin, independently, concluded that CRISPR were clearly derived from extrachromosomal DNA elements, with most being similar to bacteriophage and plasmids. Outstandingly, species containing CRISPR elements were protected against corresponding foreign invaders and had no residual prophage as evidence of prior infections.4‒6","PeriodicalId":91326,"journal":{"name":"Journal of microbiology & experimentation","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of microbiology & experimentation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15406/jmen.2019.07.00231","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In 2002, Ruud Jansen of Utrecht University found a 21-37 bp interspaced short sequence repeats distinctly spaced among several bacterial species, such as, Salmonella typhimurium (21bp) and Streptococcus pyogenes (37bp). Jansen’s team found that CRISPRs were unique to certain prokaryotes and not viruses and eukaryotes. Moreover, they identified a common sequence, GTT/AAC, at the ends and a long homologous sequence along the upstream without an open reading frame, indicating a conserved ncRNA segment. Their findings were similar to that of Ishino and Mojica, and they have referred the phenomenon as Clustered Regularly Interspaced Short Palindormic Repeats (CRISPR). The biological meaning of CRISPR remained obscure until 2005, when Pourcel, Mojica and Bolotin, independently, concluded that CRISPR were clearly derived from extrachromosomal DNA elements, with most being similar to bacteriophage and plasmids. Outstandingly, species containing CRISPR elements were protected against corresponding foreign invaders and had no residual prophage as evidence of prior infections.4‒6
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于CRISPR/neneneba CAS系统的基因组编辑:基因操作和遗传新时代的开始
2002年,乌得勒支大学的Ruud Jansen发现了21-37 bp的间隔短序列重复序列,在几种细菌中明显间隔,如鼠伤寒沙门氏菌(21bp)和化脓性链球菌(37bp)。Jansen的研究小组发现,crispr是某些原核生物所特有的,而不是病毒和真核生物。此外,他们在末端发现了一个共同序列GTT/AAC,在上游发现了一个没有开放阅读框的长同源序列,表明这是一个保守的ncRNA片段。他们的发现与Ishino和Mojica的发现相似,他们将这种现象称为聚集规则间隔短回文重复序列(CRISPR)。CRISPR的生物学意义一直不清楚,直到2005年,Pourcel、Mojica和Bolotin分别得出结论,CRISPR显然来自染色体外的DNA元件,其中大多数类似于噬菌体和质粒。值得注意的是,含有CRISPR元素的物种能够抵御相应的外来入侵者,并且没有残留的前噬菌体作为先前感染的证据
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Loss of control of the pandemic during vaccination in Uruguay Nodular periorbital dirofilariasis in a child in Romania: case report Acinetobacter baumannii, a global health-threatening bacterium: a short review Pandemic parameters: history revisited Nasal carriage of Staphylococcus aureus among a healthy suburban population: genotypic diversity and frequency of pathogenicity genes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1