Multi‐view side information‐incorporated tensor completion

IF 1.8 3区 数学 Q1 MATHEMATICS Numerical Linear Algebra with Applications Pub Date : 2022-12-19 DOI:10.1002/nla.2485
Yingjie Tian, Xiaotong Yu, Saiji Fu
{"title":"Multi‐view side information‐incorporated tensor completion","authors":"Yingjie Tian, Xiaotong Yu, Saiji Fu","doi":"10.1002/nla.2485","DOIUrl":null,"url":null,"abstract":"Tensor completion originates in numerous applications where data utilized are of high dimensions and gathered from multiple sources or views. Existing methods merely incorporate the structure information, ignoring the fact that ubiquitous side information may be beneficial to estimate the missing entries from a partially observed tensor. Inspired by this, we formulate a sparse and low‐rank tensor completion model named SLRMV. The ℓ0$$ {\\ell}_0 $$ ‐norm instead of its relaxation is used in the objective function to constrain the sparseness of noise. The CP decomposition is used to decompose the high‐quality tensor, based on which the combination of Schatten p$$ p $$ ‐norm on each latent factor matrix is employed to characterize the low‐rank tensor structure with high computation efficiency. Diverse similarity matrices for the same factor matrix are regarded as multi‐view side information for guiding the tensor completion task. Although SLRMV is a nonconvex and discontinuous problem, the optimality analysis in terms of Karush‐Kuhn‐Tucker (KKT) conditions is accordingly proposed, based on which a hard‐thresholding based alternating direction method of multipliers (HT‐ADMM) is designed. Extensive experiments remarkably demonstrate the efficiency of SLRMV in tensor completion.","PeriodicalId":49731,"journal":{"name":"Numerical Linear Algebra with Applications","volume":" ","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2022-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Numerical Linear Algebra with Applications","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1002/nla.2485","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Tensor completion originates in numerous applications where data utilized are of high dimensions and gathered from multiple sources or views. Existing methods merely incorporate the structure information, ignoring the fact that ubiquitous side information may be beneficial to estimate the missing entries from a partially observed tensor. Inspired by this, we formulate a sparse and low‐rank tensor completion model named SLRMV. The ℓ0$$ {\ell}_0 $$ ‐norm instead of its relaxation is used in the objective function to constrain the sparseness of noise. The CP decomposition is used to decompose the high‐quality tensor, based on which the combination of Schatten p$$ p $$ ‐norm on each latent factor matrix is employed to characterize the low‐rank tensor structure with high computation efficiency. Diverse similarity matrices for the same factor matrix are regarded as multi‐view side information for guiding the tensor completion task. Although SLRMV is a nonconvex and discontinuous problem, the optimality analysis in terms of Karush‐Kuhn‐Tucker (KKT) conditions is accordingly proposed, based on which a hard‐thresholding based alternating direction method of multipliers (HT‐ADMM) is designed. Extensive experiments remarkably demonstrate the efficiency of SLRMV in tensor completion.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
多视图侧信息合并张量补全
张量补全起源于许多应用程序,其中使用的数据是高维的,并且是从多个来源或视图收集的。现有的方法仅仅包含结构信息,而忽略了无处不在的侧信息可能有助于估计部分观测张量的缺失项。受此启发,我们建立了一个稀疏的低秩张量补全模型,命名为SLRMV。在目标函数中,用0 $$ {\ell}_0 $$‐范数代替其松弛来约束噪声的稀疏性。利用CP分解对高质量张量进行分解,在此基础上利用每个潜在因子矩阵上的Schatten p $$ p $$范数组合表征低秩张量结构,计算效率高。将同一因子矩阵的不同相似矩阵作为多视图侧信息,指导张量补全任务。尽管SLRMV是一个非凸不连续问题,但我们提出了Karush - Kuhn - Tucker (KKT)条件下的最优性分析,并在此基础上设计了一种基于硬阈值的乘法器交替方向法(HT - ADMM)。大量的实验证明了SLRMV在张量补全方面的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
3.40
自引率
2.30%
发文量
50
审稿时长
12 months
期刊介绍: Manuscripts submitted to Numerical Linear Algebra with Applications should include large-scale broad-interest applications in which challenging computational results are integral to the approach investigated and analysed. Manuscripts that, in the Editor’s view, do not satisfy these conditions will not be accepted for review. Numerical Linear Algebra with Applications receives submissions in areas that address developing, analysing and applying linear algebra algorithms for solving problems arising in multilinear (tensor) algebra, in statistics, such as Markov Chains, as well as in deterministic and stochastic modelling of large-scale networks, algorithm development, performance analysis or related computational aspects. Topics covered include: Standard and Generalized Conjugate Gradients, Multigrid and Other Iterative Methods; Preconditioning Methods; Direct Solution Methods; Numerical Methods for Eigenproblems; Newton-like Methods for Nonlinear Equations; Parallel and Vectorizable Algorithms in Numerical Linear Algebra; Application of Methods of Numerical Linear Algebra in Science, Engineering and Economics.
期刊最新文献
A Family of Inertial Three‐Term CGPMs for Large‐Scale Nonlinear Pseudo‐Monotone Equations With Convex Constraints Signal and image reconstruction with a double parameter Hager–Zhang‐type conjugate gradient method for system of nonlinear equations Superlinear Krylov convergence under streamline diffusion FEM for convection‐dominated elliptic operators On rank‐revealing QR factorizations of quaternion matrices Probabilistic perturbation bounds of matrix decompositions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1