{"title":"Multi‐view side information‐incorporated tensor completion","authors":"Yingjie Tian, Xiaotong Yu, Saiji Fu","doi":"10.1002/nla.2485","DOIUrl":null,"url":null,"abstract":"Tensor completion originates in numerous applications where data utilized are of high dimensions and gathered from multiple sources or views. Existing methods merely incorporate the structure information, ignoring the fact that ubiquitous side information may be beneficial to estimate the missing entries from a partially observed tensor. Inspired by this, we formulate a sparse and low‐rank tensor completion model named SLRMV. The ℓ0$$ {\\ell}_0 $$ ‐norm instead of its relaxation is used in the objective function to constrain the sparseness of noise. The CP decomposition is used to decompose the high‐quality tensor, based on which the combination of Schatten p$$ p $$ ‐norm on each latent factor matrix is employed to characterize the low‐rank tensor structure with high computation efficiency. Diverse similarity matrices for the same factor matrix are regarded as multi‐view side information for guiding the tensor completion task. Although SLRMV is a nonconvex and discontinuous problem, the optimality analysis in terms of Karush‐Kuhn‐Tucker (KKT) conditions is accordingly proposed, based on which a hard‐thresholding based alternating direction method of multipliers (HT‐ADMM) is designed. Extensive experiments remarkably demonstrate the efficiency of SLRMV in tensor completion.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2022-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1002/nla.2485","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Tensor completion originates in numerous applications where data utilized are of high dimensions and gathered from multiple sources or views. Existing methods merely incorporate the structure information, ignoring the fact that ubiquitous side information may be beneficial to estimate the missing entries from a partially observed tensor. Inspired by this, we formulate a sparse and low‐rank tensor completion model named SLRMV. The ℓ0$$ {\ell}_0 $$ ‐norm instead of its relaxation is used in the objective function to constrain the sparseness of noise. The CP decomposition is used to decompose the high‐quality tensor, based on which the combination of Schatten p$$ p $$ ‐norm on each latent factor matrix is employed to characterize the low‐rank tensor structure with high computation efficiency. Diverse similarity matrices for the same factor matrix are regarded as multi‐view side information for guiding the tensor completion task. Although SLRMV is a nonconvex and discontinuous problem, the optimality analysis in terms of Karush‐Kuhn‐Tucker (KKT) conditions is accordingly proposed, based on which a hard‐thresholding based alternating direction method of multipliers (HT‐ADMM) is designed. Extensive experiments remarkably demonstrate the efficiency of SLRMV in tensor completion.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.