Shuanggen Zhang, Shengdong Li, Yangbo Bai, Kai Huang
{"title":"Analysis of laser-induced transient population gratings by different types of exciting pulse","authors":"Shuanggen Zhang, Shengdong Li, Yangbo Bai, Kai Huang","doi":"10.1117/1.JNP.17.016013","DOIUrl":null,"url":null,"abstract":"Abstract. Motivated by atomic response to different initial coherent optical fields, we comparatively studied transient population grating (TPG) induced by successive pulse train. Time delay and pump pulse duration dependence of TPG is achieved by numerically solving the density matrix equations. Results reveal that the creation and erasure of TPG is possible by choosing the appropriate pulse parameters, which is illustrated by Bloch sphere model and quantitative validation. To obtain desired large grating amplitude for rectangular pulse, the allowed pulse duration can be extended to one order wider than that of Gaussian pulse. Population grating can be erased to near zero by a third pulse with time delay by an odd multiple of half the pulse width, and it also can be erased further to recover atom assembly back to the initial state by a fourth pulse with time delay equal to an integer multiple of pulse width. Atomic behaviors excited by different types of pulse presented here may be significant to manipulate TPG during coherent light-matter interaction.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1117/1.JNP.17.016013","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract. Motivated by atomic response to different initial coherent optical fields, we comparatively studied transient population grating (TPG) induced by successive pulse train. Time delay and pump pulse duration dependence of TPG is achieved by numerically solving the density matrix equations. Results reveal that the creation and erasure of TPG is possible by choosing the appropriate pulse parameters, which is illustrated by Bloch sphere model and quantitative validation. To obtain desired large grating amplitude for rectangular pulse, the allowed pulse duration can be extended to one order wider than that of Gaussian pulse. Population grating can be erased to near zero by a third pulse with time delay by an odd multiple of half the pulse width, and it also can be erased further to recover atom assembly back to the initial state by a fourth pulse with time delay equal to an integer multiple of pulse width. Atomic behaviors excited by different types of pulse presented here may be significant to manipulate TPG during coherent light-matter interaction.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.