Alberto Corno, Chiara Groppo, Alessandro Borghi, Pietro Mosca, Marco Gattiglio
{"title":"To be or not to be Alpine: New petrological constraints on the metamorphism of the Chenaillet Ophiolite (Western Alps)","authors":"Alberto Corno, Chiara Groppo, Alessandro Borghi, Pietro Mosca, Marco Gattiglio","doi":"10.1111/jmg.12716","DOIUrl":null,"url":null,"abstract":"<p>The Chenaillet Ophiolite represents a very well-preserved portion of Ligurian-Piedmont ocean in the Western Alps. It is formed from an oceanic lithospheric succession comprising exhumed mantle, various mafic intrusives (i.e., gabbro sensu <i>lato</i>), and a world-renowned sequence of pillow basalts. Apart from scarce breccias closely related to oceanic lithosphere, no sedimentary cover is exposed. Historically, the Chenaillet Ophiolite has been known for its very low temperature–low pressure Alpine metamorphism, ascribed to obduction processes. However, studies aimed at constraining the peak pressure–temperature (P–T) conditions of Alpine metamorphism are virtually lacking, the general focus having been so far on its high temperature metamorphism and geochemical features. In this paper, we investigate two kinds of rocks: gabbro and albitite/alkali syenite, whose petrographic features shed light on the complex metamorphic history of the Chenaillet Ophiolite. Detailed analyses of mineral assemblages, blastesis/deformation relationships, and mineral chemical data allow two metamorphic events to be distinguished: an earlier, high temperature event (already reported in the literature) and a second, later low temperature, high pressure event, recognized here for the first time. The low temperature, high pressure event is strikingly testified by the occurrence of lawsonite relicts in the gabbro and of interstitial omphacite in the albitite. Thermodynamic modelling (i.e., via isochemical phase diagrams) performed on a gabbro sample suggests for this unit a minimum of 9 kbar and 300°C and a maximum of 15 kbar and 450°C. Overlapping these P–T conditions with those inferred for the albitite based on the observed mineral assemblage allows the Alpine peak metamorphism to be constrained to 10–11 kbar and 340–360°C. These P–T conditions suggest a thickness of the overlying nappe stack of about 35–40 km, which is incompatible with obduction or burial processes, and instead consistent with subduction processes related to the Alpine orogeny. We argue that, opposite to the common belief that the Chenaillet Ophiolite escaped Alpine metamorphism, our new data strongly support the idea that it experienced low temperature-blueschist-facies metamorphism, whose evidence can still be tracked in those (few) rocks that better recorded and preserved it. This finding generates new challenging questions regarding both subduction and exhumation processes in complex orogens such as the Western Alps.</p>","PeriodicalId":16472,"journal":{"name":"Journal of Metamorphic Geology","volume":"41 6","pages":"745-765"},"PeriodicalIF":3.5000,"publicationDate":"2023-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/jmg.12716","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Metamorphic Geology","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/jmg.12716","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOLOGY","Score":null,"Total":0}
引用次数: 3
Abstract
The Chenaillet Ophiolite represents a very well-preserved portion of Ligurian-Piedmont ocean in the Western Alps. It is formed from an oceanic lithospheric succession comprising exhumed mantle, various mafic intrusives (i.e., gabbro sensu lato), and a world-renowned sequence of pillow basalts. Apart from scarce breccias closely related to oceanic lithosphere, no sedimentary cover is exposed. Historically, the Chenaillet Ophiolite has been known for its very low temperature–low pressure Alpine metamorphism, ascribed to obduction processes. However, studies aimed at constraining the peak pressure–temperature (P–T) conditions of Alpine metamorphism are virtually lacking, the general focus having been so far on its high temperature metamorphism and geochemical features. In this paper, we investigate two kinds of rocks: gabbro and albitite/alkali syenite, whose petrographic features shed light on the complex metamorphic history of the Chenaillet Ophiolite. Detailed analyses of mineral assemblages, blastesis/deformation relationships, and mineral chemical data allow two metamorphic events to be distinguished: an earlier, high temperature event (already reported in the literature) and a second, later low temperature, high pressure event, recognized here for the first time. The low temperature, high pressure event is strikingly testified by the occurrence of lawsonite relicts in the gabbro and of interstitial omphacite in the albitite. Thermodynamic modelling (i.e., via isochemical phase diagrams) performed on a gabbro sample suggests for this unit a minimum of 9 kbar and 300°C and a maximum of 15 kbar and 450°C. Overlapping these P–T conditions with those inferred for the albitite based on the observed mineral assemblage allows the Alpine peak metamorphism to be constrained to 10–11 kbar and 340–360°C. These P–T conditions suggest a thickness of the overlying nappe stack of about 35–40 km, which is incompatible with obduction or burial processes, and instead consistent with subduction processes related to the Alpine orogeny. We argue that, opposite to the common belief that the Chenaillet Ophiolite escaped Alpine metamorphism, our new data strongly support the idea that it experienced low temperature-blueschist-facies metamorphism, whose evidence can still be tracked in those (few) rocks that better recorded and preserved it. This finding generates new challenging questions regarding both subduction and exhumation processes in complex orogens such as the Western Alps.
期刊介绍:
The journal, which is published nine times a year, encompasses the entire range of metamorphic studies, from the scale of the individual crystal to that of lithospheric plates, including regional studies of metamorphic terranes, modelling of metamorphic processes, microstructural and deformation studies in relation to metamorphism, geochronology and geochemistry in metamorphic systems, the experimental study of metamorphic reactions, properties of metamorphic minerals and rocks and the economic aspects of metamorphic terranes.