Application of nuclear magnetic resonance/magnetic resonance imaging techniques to estimate proton relaxation parameters in various solvent at Earth field

IF 1.3 4区 材料科学 Q4 MATERIALS SCIENCE, MULTIDISCIPLINARY Emerging Materials Research Pub Date : 2022-09-01 DOI:10.1680/jemmr.21.00180
H. Ovalıoğlu
{"title":"Application of nuclear magnetic resonance/magnetic resonance imaging techniques to estimate proton relaxation parameters in various solvent at Earth field","authors":"H. Ovalıoğlu","doi":"10.1680/jemmr.21.00180","DOIUrl":null,"url":null,"abstract":"The nuclear magnetic resonance (NMR) field of earth may be utilized to estimate proton relaxation parameters in different liquids. In liquid samples, it can quantified proton relaxation durations T 1 and T 2 , along with the self-diffusion coefficient D, thanks to the magnetic field of the Earth. It was proved that it is feasible to distinguish between liquids based only on these characteristics by analyzing a wide range of liquid samples. In this paper, it was investigated whether it is possible to utilize Earth’s magnetic field Nuclear Magnetic Resonance (EFNMR) so as to correctly and practically quantify T 1 and T 2 along with the self-diffusion coefficient D. These findings pave the way for additional research into the use of EFNMR for the determination of relaxation parameters. It was acquired two-dimensional 1H NMR images of 50 ml of toluene solvent at low frequencies using the magnetic field of the Earth.","PeriodicalId":11537,"journal":{"name":"Emerging Materials Research","volume":" ","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Emerging Materials Research","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1680/jemmr.21.00180","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1

Abstract

The nuclear magnetic resonance (NMR) field of earth may be utilized to estimate proton relaxation parameters in different liquids. In liquid samples, it can quantified proton relaxation durations T 1 and T 2 , along with the self-diffusion coefficient D, thanks to the magnetic field of the Earth. It was proved that it is feasible to distinguish between liquids based only on these characteristics by analyzing a wide range of liquid samples. In this paper, it was investigated whether it is possible to utilize Earth’s magnetic field Nuclear Magnetic Resonance (EFNMR) so as to correctly and practically quantify T 1 and T 2 along with the self-diffusion coefficient D. These findings pave the way for additional research into the use of EFNMR for the determination of relaxation parameters. It was acquired two-dimensional 1H NMR images of 50 ml of toluene solvent at low frequencies using the magnetic field of the Earth.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
核磁共振/磁共振成像技术在地球场各种溶剂中质子弛豫参数估计中的应用
地球的核磁共振场可以用来估计不同液体中的质子弛豫参数。在液体样品中,由于地球磁场的作用,它可以定量质子弛豫持续时间t1和t2,以及自扩散系数D。通过分析大范围的液体样品,证明仅根据这些特征来区分液体是可行的。本文研究了是否有可能利用地球磁场核磁共振(EFNMR)来正确和实际地量化t1和t2以及自扩散系数d。这些发现为进一步研究利用EFNMR来确定弛豫参数铺平了道路。利用地球磁场获得了50ml甲苯溶剂在低频下的二维1H NMR图像。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Emerging Materials Research
Emerging Materials Research MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
4.50
自引率
9.10%
发文量
62
期刊介绍: Materials Research is constantly evolving and correlations between process, structure, properties and performance which are application specific require expert understanding at the macro-, micro- and nano-scale. The ability to intelligently manipulate material properties and tailor them for desired applications is of constant interest and challenge within universities, national labs and industry.
期刊最新文献
Performance enhancement of Sb2Se3 solar cell with IGZO and n-ZnO as electron transport layers The shape recovery behavior of compressively deformed Fe–Mn–Si–Cr–Ni alloys Study of a mechano-electrochemical model: a numerical and experimental approach Preparation and characterization of expanded dickite/decanoic acid phase-change materials Controllable preparation and electromagnetic wave absorption performance of compressible graphene aerogels
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1