Huaji Zhou , Jing Bai , Yiran Wang , Junjie Ren , Xiaoniu Yang , Licheng Jiao
{"title":"Deep radio signal clustering with interpretability analysis based on saliency map","authors":"Huaji Zhou , Jing Bai , Yiran Wang , Junjie Ren , Xiaoniu Yang , Licheng Jiao","doi":"10.1016/j.dcan.2023.01.010","DOIUrl":null,"url":null,"abstract":"<div><div>With the development of information technology, radio communication technology has made rapid progress. Many radio signals that have appeared in space are difficult to classify without manually labeling. Unsupervised radio signal clustering methods have recently become an urgent need for this situation. Meanwhile, the high complexity of deep learning makes it difficult to understand the decision results of the clustering models, making it essential to conduct interpretable analysis. This paper proposed a combined loss function for unsupervised clustering based on autoencoder. The combined loss function includes reconstruction loss and deep clustering loss. Deep clustering loss is added based on reconstruction loss, which makes similar deep features converge more in feature space. In addition, a features visualization method for signal clustering was proposed to analyze the interpretability of autoencoder utilizing Saliency Map. Extensive experiments have been conducted on a modulated signal dataset, and the results indicate the superior performance of our proposed method over other clustering algorithms. In particular, for the simulated dataset containing six modulation modes, when the SNR is 20 dB, the clustering accuracy of the proposed method is greater than 78%. The interpretability analysis of the clustering model was performed to visualize the significant features of different modulated signals and verified the high separability of the features extracted by clustering model.</div></div>","PeriodicalId":48631,"journal":{"name":"Digital Communications and Networks","volume":"10 5","pages":"Pages 1448-1458"},"PeriodicalIF":7.5000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Digital Communications and Networks","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352864823000238","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"TELECOMMUNICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
With the development of information technology, radio communication technology has made rapid progress. Many radio signals that have appeared in space are difficult to classify without manually labeling. Unsupervised radio signal clustering methods have recently become an urgent need for this situation. Meanwhile, the high complexity of deep learning makes it difficult to understand the decision results of the clustering models, making it essential to conduct interpretable analysis. This paper proposed a combined loss function for unsupervised clustering based on autoencoder. The combined loss function includes reconstruction loss and deep clustering loss. Deep clustering loss is added based on reconstruction loss, which makes similar deep features converge more in feature space. In addition, a features visualization method for signal clustering was proposed to analyze the interpretability of autoencoder utilizing Saliency Map. Extensive experiments have been conducted on a modulated signal dataset, and the results indicate the superior performance of our proposed method over other clustering algorithms. In particular, for the simulated dataset containing six modulation modes, when the SNR is 20 dB, the clustering accuracy of the proposed method is greater than 78%. The interpretability analysis of the clustering model was performed to visualize the significant features of different modulated signals and verified the high separability of the features extracted by clustering model.
期刊介绍:
Digital Communications and Networks is a prestigious journal that emphasizes on communication systems and networks. We publish only top-notch original articles and authoritative reviews, which undergo rigorous peer-review. We are proud to announce that all our articles are fully Open Access and can be accessed on ScienceDirect. Our journal is recognized and indexed by eminent databases such as the Science Citation Index Expanded (SCIE) and Scopus.
In addition to regular articles, we may also consider exceptional conference papers that have been significantly expanded. Furthermore, we periodically release special issues that focus on specific aspects of the field.
In conclusion, Digital Communications and Networks is a leading journal that guarantees exceptional quality and accessibility for researchers and scholars in the field of communication systems and networks.