Engine Oil Deterioration based on the Viscosity, flash point and fire point for Different Trip Length

Dana Hameed
{"title":"Engine Oil Deterioration based on the Viscosity, flash point and fire point for Different Trip Length","authors":"Dana Hameed","doi":"10.24017/SCIENCE.2021.1.2","DOIUrl":null,"url":null,"abstract":"Fresh engine oils or engine lubricants lose some of their properties during service, engine lubricant deterioration leads to change in oil properties, which ultimately have effect on engine overall performance.  Therefore, it is very important to characterize used engine lubricants at different using conditions to check the performance and ability of existing oils, which in turn protects engine parts and also designs new formulations to produce better type of engine oil or improve the existing oil. Therefore, optimizing engine oil lubricant changing time is very important for reducing environmental impact but renewing engine lubricant before it is due rises a customer’s cost. In this study, the most significant parameters such as kinematic viscosity, flash point and fire point were chosen to determine the changes and deterioration in engine oil properties. The oil samples were multigrade fully synthetic with SAE gradation 10W-30 grand ecodrive is used in 5 different passenger cars. Having information about these properties are crucial chemical and physical behaviours of engine oils and for keeping engine’s lifecycle. The test results of this work show that after 10,000 km, 10W-30 Delta NL motor oil brand (special synthetic with API SL) oil properties such as kinematic viscosity at cold start, 40 °C and 100 °C decreased 22.92%, 23.61% and 22.92% respectively. In addition, both flash point and fire point decreased 15.6% and 14.22% consecutively for the base properties, and according to the test results this type of engine oil is suitable to use for 10,000 km.","PeriodicalId":17866,"journal":{"name":"Kurdistan Journal of Applied Research","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Kurdistan Journal of Applied Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24017/SCIENCE.2021.1.2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Fresh engine oils or engine lubricants lose some of their properties during service, engine lubricant deterioration leads to change in oil properties, which ultimately have effect on engine overall performance.  Therefore, it is very important to characterize used engine lubricants at different using conditions to check the performance and ability of existing oils, which in turn protects engine parts and also designs new formulations to produce better type of engine oil or improve the existing oil. Therefore, optimizing engine oil lubricant changing time is very important for reducing environmental impact but renewing engine lubricant before it is due rises a customer’s cost. In this study, the most significant parameters such as kinematic viscosity, flash point and fire point were chosen to determine the changes and deterioration in engine oil properties. The oil samples were multigrade fully synthetic with SAE gradation 10W-30 grand ecodrive is used in 5 different passenger cars. Having information about these properties are crucial chemical and physical behaviours of engine oils and for keeping engine’s lifecycle. The test results of this work show that after 10,000 km, 10W-30 Delta NL motor oil brand (special synthetic with API SL) oil properties such as kinematic viscosity at cold start, 40 °C and 100 °C decreased 22.92%, 23.61% and 22.92% respectively. In addition, both flash point and fire point decreased 15.6% and 14.22% consecutively for the base properties, and according to the test results this type of engine oil is suitable to use for 10,000 km.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
不同行程下机油粘度、闪点和燃点的劣化
新鲜的发动机油或发动机润滑油在使用过程中会失去一些特性,发动机润滑油的变质会导致机油特性的变化,最终影响发动机的整体性能。因此,在不同的使用条件下对二手发动机润滑油进行表征,以检查现有机油的性能和能力,从而保护发动机部件,并设计新的配方以生产更好类型的发动机机油或改进现有机油是非常重要的。因此,优化发动机润滑油更换时间对于减少对环境的影响是非常重要的,但提前更换发动机润滑油会增加客户的成本。在本研究中,选取了运动粘度、闪点和燃点等最重要的参数来确定发动机油性能的变化和劣化。油样是多级合成的,SAE等级为10W-30,在5种不同的乘用车中使用了grand ecodrive。掌握这些特性的信息是至关重要的化学和物理行为的发动机油和保持发动机的生命周期。本工作的试验结果表明,10W-30台达NL牌机油(API SL特种合成)在行驶1万公里后,冷启动、40℃和100℃时的运动粘度等机油性能分别下降22.92%、23.61%和22.92%。此外,基础性能闪点和燃点分别下降15.6%和14.22%,试验结果表明,该型机油适合使用1万公里。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
16
审稿时长
12 weeks
期刊最新文献
A Wavelet Shrinkage Mixed with a Single-level 2D Discrete Wavelet Transform for Image Denoising Assessing the Impact of Modified Initial Abstraction Ratios and Slope Adjusted Curve Number on Runoff Prediction in the Watersheds of Sulaimani Province. Assessment of the Antifungal Activity of PMMA-MgO and PMMA-Ag Nanocomposite Multi-Label Feature Selection with Graph-based Ant Colony Optimization and Generalized Jaccard Similarity Evaluate the Implementation of WHO Infection Prevention and Control Core Components Among Health Care Facilities
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1