I. Gustian, Anastasia Simalango, D. A. Triawan, Agus Martono Hadi Putranto, Asdim
{"title":"Synthesis and characterization of proton-conducting membranes based on bacterial cellulose and human nail keratin","authors":"I. Gustian, Anastasia Simalango, D. A. Triawan, Agus Martono Hadi Putranto, Asdim","doi":"10.1515/epoly-2023-0040","DOIUrl":null,"url":null,"abstract":"Abstract In this work, proton-conducting membranes have been prepared by entrapping human nail keratin in bacterial cellulose at different mass ratios. Bacterial cellulose was obtained by fermenting coconut water with the Acetobacter xylinum bacterium, and keratin was obtained from human nails. The membrane is produced by the blending and heating process at a temperature of 40°C. FTIR spectroscopy showed the interaction between bacterial cellulose and human nail keratin at a peak area of 3,000–2,000 cm−1. The X-ray diffraction analysis has confirmed the effect of keratin mass on the diffractogram pattern of the membranes. The maximum proton conductivity has been measured as 4.572 × 10−5 S·cm−1 at 25°C and produces a degree of swelling of 32.50% for a mass ratio of bacterial cellulose/human nail keratin 4:1.","PeriodicalId":11806,"journal":{"name":"e-Polymers","volume":" ","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"e-Polymers","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1515/epoly-2023-0040","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract In this work, proton-conducting membranes have been prepared by entrapping human nail keratin in bacterial cellulose at different mass ratios. Bacterial cellulose was obtained by fermenting coconut water with the Acetobacter xylinum bacterium, and keratin was obtained from human nails. The membrane is produced by the blending and heating process at a temperature of 40°C. FTIR spectroscopy showed the interaction between bacterial cellulose and human nail keratin at a peak area of 3,000–2,000 cm−1. The X-ray diffraction analysis has confirmed the effect of keratin mass on the diffractogram pattern of the membranes. The maximum proton conductivity has been measured as 4.572 × 10−5 S·cm−1 at 25°C and produces a degree of swelling of 32.50% for a mass ratio of bacterial cellulose/human nail keratin 4:1.
期刊介绍:
e-Polymers is a strictly peer-reviewed scientific journal. The aim of e-Polymers is to publish pure and applied polymer-science-related original research articles, reviews, and feature articles. It includes synthetic methodologies, characterization, and processing techniques for polymer materials. Reports on interdisciplinary polymer science and on applications of polymers in all areas are welcome.
The present Editors-in-Chief would like to thank the authors, the reviewers, the editorial staff, the advisory board, and the supporting organization that made e-Polymers a successful and sustainable scientific journal of the polymer community. The Editors of e-Polymers feel very much engaged to provide best publishing services at the highest possible level.