A Computational Method for the Estimation of the Geometrical and Thermophysical Properties of Tumor Using Contact Thermometry

IF 0.8 4区 医学 Q4 ENGINEERING, BIOMEDICAL Journal of Medical Devices-Transactions of the Asme Pub Date : 2021-09-01 DOI:10.1115/1.4051517
N. Sudarsan, K. Arathy, Linta Antony, R. S. Sudheesh, M. N. Muralidharan, B. Satheesan, Seema Ansari
{"title":"A Computational Method for the Estimation of the Geometrical and Thermophysical Properties of Tumor Using Contact Thermometry","authors":"N. Sudarsan, K. Arathy, Linta Antony, R. S. Sudheesh, M. N. Muralidharan, B. Satheesan, Seema Ansari","doi":"10.1115/1.4051517","DOIUrl":null,"url":null,"abstract":"\n Contact thermometry is the measurement of surface temperature using sensors in contact with the medium. These surface temperatures can be potential indicators of any abnormality possibly a tumor. This research work aims to present a computation method that makes use of contact thermometry to estimate the geometric center, size, and thermophysical properties of breast tumor. Wearable thermal sensors captured real-time surface temperature readings from discrete point locations. The continuous heat distribution over the domain was formulated using forward heat transfer analysis. The optimization method estimated tumor parameters of the breast, and a three-dimensional thermal model was developed from the estimated parameters. Laboratory experiments on breast phantoms were done to validate the estimation method. Furthermore, real-time temperature readings of human subjects were recorded, and the estimated location and size were then compared with the mammogram results. It was found that the estimated two-dimensional geometric center and the size in diameter of the tumor closely match with the mammogram results. Further, the thermophysical properties estimated using the proposed method had a higher order in subjects having a tumor making it a tool for breast cancer screening.","PeriodicalId":49305,"journal":{"name":"Journal of Medical Devices-Transactions of the Asme","volume":" ","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2021-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Medical Devices-Transactions of the Asme","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1115/1.4051517","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 2

Abstract

Contact thermometry is the measurement of surface temperature using sensors in contact with the medium. These surface temperatures can be potential indicators of any abnormality possibly a tumor. This research work aims to present a computation method that makes use of contact thermometry to estimate the geometric center, size, and thermophysical properties of breast tumor. Wearable thermal sensors captured real-time surface temperature readings from discrete point locations. The continuous heat distribution over the domain was formulated using forward heat transfer analysis. The optimization method estimated tumor parameters of the breast, and a three-dimensional thermal model was developed from the estimated parameters. Laboratory experiments on breast phantoms were done to validate the estimation method. Furthermore, real-time temperature readings of human subjects were recorded, and the estimated location and size were then compared with the mammogram results. It was found that the estimated two-dimensional geometric center and the size in diameter of the tumor closely match with the mammogram results. Further, the thermophysical properties estimated using the proposed method had a higher order in subjects having a tumor making it a tool for breast cancer screening.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用接触测温法估算肿瘤几何和热物理性质的一种计算方法
接触式测温是使用与介质接触的传感器测量表面温度。这些表面温度可能是任何异常的潜在指标,可能是肿瘤。本研究工作旨在提出一种利用接触测温来估计乳腺肿瘤的几何中心、大小和热物理性质的计算方法。可佩戴的热传感器从离散的点位置捕获实时表面温度读数。采用正向传热分析法,对整个区域的连续热分布进行了公式化。该优化方法估计了乳腺的肿瘤参数,并根据估计的参数建立了三维热模型。在乳腺模型上进行了实验室实验,验证了该估计方法。此外,记录人类受试者的实时体温读数,然后将估计的位置和大小与乳房X光检查结果进行比较。发现估计的二维几何中心和肿瘤的直径大小与乳房X光检查结果非常吻合。此外,使用所提出的方法估计的热物理性质在患有肿瘤的受试者中具有更高的阶数,使其成为乳腺癌症筛查的工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
1.80
自引率
11.10%
发文量
56
审稿时长
6-12 weeks
期刊介绍: The Journal of Medical Devices presents papers on medical devices that improve diagnostic, interventional and therapeutic treatments focusing on applied research and the development of new medical devices or instrumentation. It provides special coverage of novel devices that allow new surgical strategies, new methods of drug delivery, or possible reductions in the complexity, cost, or adverse results of health care. The Design Innovation category features papers focusing on novel devices, including papers with limited clinical or engineering results. The Medical Device News section provides coverage of advances, trends, and events.
期刊最新文献
Mechanical Viability and Functionality Assessment of a New Sutureless Endoluminal Microvascular Device: A Preliminary In Vivo Rabbit Study. Design and Implementation of a Computer-Controlled Hybrid Oscillatory Ventilator. Controlled Ice Nucleation With a Sand-PDMS Film Device Enhances Cryopreservation of Mouse Preantral Ovarian Follicles. A Novel Design Method for the Knee Joint of the Exoskeleton Based On the Modular Wearable Sensor Experimental Investigation of the Calcified Plaque Material Removal Rate in Coronary Rotational Atherectomy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1