Lang Lei, Ruirui Pang, Zhibang Han, Dong Wu, Bing Xie, Yinglong Su
{"title":"Current applications and future impact of machine learning in emerging contaminants: A review","authors":"Lang Lei, Ruirui Pang, Zhibang Han, Dong Wu, Bing Xie, Yinglong Su","doi":"10.1080/10643389.2023.2190313","DOIUrl":null,"url":null,"abstract":"Abstract With the continuous release into environments, emerging contaminants (ECs) have attracted widespread attention for the potential risks, and numerous studies have been conducted on their identification, environmental behavior bioeffects, and removal. Owing to the superiority of dealing with high-dimensional and unstructured data, a new data-driven approach, machine learning (ML), has been gradually applied in the research of ECs. This review described the fundamental principle, algorithms, and workflow of ML, and summarized advances of ML applications for typical ECs (per- and polyfluoroalkyl substances, nanoparticles, antibiotic resistance genes, endocrine-disrupting chemicals, microplastics, antibiotics, and pharmaceutical and personal care products). ML methods showed practicability, reliability, and effectiveness in predicting or analyzing the occurrence, distribution, bioeffects, and removal of ECs, and various algorithms and derived models were developed and optimized to obtain better performance. Moreover, the size and homogeneity of the data set strongly influence the application of ML, and choosing the appropriate ML models with different characteristics is crucial for addressing specific problems related to the data sets. Future efforts should focus on improving the quality of data set and adopting more advanced algorithms, developing the potential of quantitative structure-activity relationship, and promoting the applicability domains and interpretability of models. In addition, the development of codeless ML tools will benefit the accessibility of ML models. Graphical abstract","PeriodicalId":10823,"journal":{"name":"Critical Reviews in Environmental Science and Technology","volume":"53 1","pages":"1817 - 1835"},"PeriodicalIF":11.4000,"publicationDate":"2023-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"54","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Critical Reviews in Environmental Science and Technology","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1080/10643389.2023.2190313","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 54
Abstract
Abstract With the continuous release into environments, emerging contaminants (ECs) have attracted widespread attention for the potential risks, and numerous studies have been conducted on their identification, environmental behavior bioeffects, and removal. Owing to the superiority of dealing with high-dimensional and unstructured data, a new data-driven approach, machine learning (ML), has been gradually applied in the research of ECs. This review described the fundamental principle, algorithms, and workflow of ML, and summarized advances of ML applications for typical ECs (per- and polyfluoroalkyl substances, nanoparticles, antibiotic resistance genes, endocrine-disrupting chemicals, microplastics, antibiotics, and pharmaceutical and personal care products). ML methods showed practicability, reliability, and effectiveness in predicting or analyzing the occurrence, distribution, bioeffects, and removal of ECs, and various algorithms and derived models were developed and optimized to obtain better performance. Moreover, the size and homogeneity of the data set strongly influence the application of ML, and choosing the appropriate ML models with different characteristics is crucial for addressing specific problems related to the data sets. Future efforts should focus on improving the quality of data set and adopting more advanced algorithms, developing the potential of quantitative structure-activity relationship, and promoting the applicability domains and interpretability of models. In addition, the development of codeless ML tools will benefit the accessibility of ML models. Graphical abstract
期刊介绍:
Two of the most pressing global challenges of our era involve understanding and addressing the multitude of environmental problems we face. In order to tackle them effectively, it is essential to devise logical strategies and methods for their control. Critical Reviews in Environmental Science and Technology serves as a valuable international platform for the comprehensive assessment of current knowledge across a wide range of environmental science topics.
Environmental science is a field that encompasses the intricate and fluid interactions between various scientific disciplines. These include earth and agricultural sciences, chemistry, biology, medicine, and engineering. Furthermore, new disciplines such as environmental toxicology and risk assessment have emerged in response to the increasing complexity of environmental challenges.
The purpose of Critical Reviews in Environmental Science and Technology is to provide a space for critical analysis and evaluation of existing knowledge in environmental science. By doing so, it encourages the advancement of our understanding and the development of effective solutions. This journal plays a crucial role in fostering international cooperation and collaboration in addressing the pressing environmental issues of our time.