Effect of potassium fertilization in sandy soil on the content of essential nutrients in soybean leaves

IF 3.5 2区 农林科学 Q1 AGRICULTURE, MULTIDISCIPLINARY Annals of Agricultural Science Pub Date : 2022-06-01 DOI:10.1016/j.aoas.2022.06.001
Marcelo Raphael Volf , Willian Batista-Silva , Ailton Donizete Silvério , Lucas Grizzo dos Santos , Carlos Sérgio Tiritan
{"title":"Effect of potassium fertilization in sandy soil on the content of essential nutrients in soybean leaves","authors":"Marcelo Raphael Volf ,&nbsp;Willian Batista-Silva ,&nbsp;Ailton Donizete Silvério ,&nbsp;Lucas Grizzo dos Santos ,&nbsp;Carlos Sérgio Tiritan","doi":"10.1016/j.aoas.2022.06.001","DOIUrl":null,"url":null,"abstract":"<div><p>Among the plant nutrients, potassium (K) plays a fundamental role in plant physiology and the soil-plant dynamics of various nutrients. Careful rate recommendations for K are needed to ensure that the balance between cationic nutrients and micronutrients is maintained, especially in sandy soils. The current research aimed to evaluate the absorption dynamic of several nutrients by soybean (<em>Glycine</em> max. Merrill.) growing in sandy soil under the application of five rates of K (0, 25, 50, 75, and 100 kg ha<sup>−1</sup>) via potassium chloride (KCl) with five replications. The concentrations of K<sup>+</sup> in the diagnostic leaves of the soybean plants presented quadratic behavior with the increase in K rate and reached a maximum of 17.74 mg kg<sup>−1</sup> at a rate of approximately 81 kg ha<sup>−1</sup> K, which was found through a regression test. The leaf concentrations of calcium (Ca<sup>2+</sup>) and magnesium (Mg<sup>2+</sup>) decreased linearly with increasing K rate. By contrast, the leaf concentrations of the micronutrients; boron (B) and iron (Fe<sup>2+</sup>) decreased with increasing K rate. Soybean productivity was not influenced by the application of K. Principal component analysis (PCA) showed a clear influence of increasing K rates on the leaf nutritional parameters of soybean plants. The results confirm that the high application of K in sandy soils can disrupt the balance of nutrient uptake by soybean plants.</p></div>","PeriodicalId":54198,"journal":{"name":"Annals of Agricultural Science","volume":"67 1","pages":"Pages 99-106"},"PeriodicalIF":3.5000,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0570178322000100/pdfft?md5=d72312a402b7bc93ef13687a1e8abcaf&pid=1-s2.0-S0570178322000100-main.pdf","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Agricultural Science","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0570178322000100","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 3

Abstract

Among the plant nutrients, potassium (K) plays a fundamental role in plant physiology and the soil-plant dynamics of various nutrients. Careful rate recommendations for K are needed to ensure that the balance between cationic nutrients and micronutrients is maintained, especially in sandy soils. The current research aimed to evaluate the absorption dynamic of several nutrients by soybean (Glycine max. Merrill.) growing in sandy soil under the application of five rates of K (0, 25, 50, 75, and 100 kg ha−1) via potassium chloride (KCl) with five replications. The concentrations of K+ in the diagnostic leaves of the soybean plants presented quadratic behavior with the increase in K rate and reached a maximum of 17.74 mg kg−1 at a rate of approximately 81 kg ha−1 K, which was found through a regression test. The leaf concentrations of calcium (Ca2+) and magnesium (Mg2+) decreased linearly with increasing K rate. By contrast, the leaf concentrations of the micronutrients; boron (B) and iron (Fe2+) decreased with increasing K rate. Soybean productivity was not influenced by the application of K. Principal component analysis (PCA) showed a clear influence of increasing K rates on the leaf nutritional parameters of soybean plants. The results confirm that the high application of K in sandy soils can disrupt the balance of nutrient uptake by soybean plants.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
砂质土壤施钾对大豆叶片必需养分含量的影响
在植物养分中,钾在植物生理和各种养分的土壤-植物动态中起着至关重要的作用。需要谨慎建议钾的施用量,以确保保持阳离子营养素和微量营养素之间的平衡,特别是在沙质土壤中。本研究旨在评价大豆对几种营养物质的吸收动态。(Merrill.)在沙质土壤中,通过氯化钾(KCl)施用5种钾肥(0、25、50、75和100 kg ha - 1),共5个重复。通过回归检验发现,随着施钾速率的增加,大豆诊断叶片中K+的浓度呈二次曲线,在施钾速率约为81 kg ha - 1 K时达到最大值17.74 mg kg - 1。叶片钙(Ca2+)和镁(Mg2+)浓度随施钾量的增加呈线性下降。相比之下,叶片中微量元素的浓度;硼(B)和铁(Fe2+)随K速率的增加而降低。主成分分析(PCA)表明,施钾量的增加对大豆植株叶片营养参数有明显影响。结果表明,砂质土壤高施钾会破坏大豆植株对养分的吸收平衡。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Annals of Agricultural Science
Annals of Agricultural Science AGRICULTURE, MULTIDISCIPLINARY-
CiteScore
12.60
自引率
0.00%
发文量
18
审稿时长
33 days
期刊介绍: Annals of Agricultural Sciences (AOAS) is the official journal of Faculty of Agriculture, Ain Shams University. AOAS is an open access peer-reviewed journal publishing original research articles and review articles on experimental and modelling research at laboratory, field, farm, landscape, and industrial levels. AOAS aims to maximize the quality of the agricultural sector across the globe with emphasis on the Arabian countries by focusing on publishing the high-quality applicable researches, in addition to the new methods and frontiers leading to maximizing the quality and quantity of both plant and animal yield and final products.
期刊最新文献
Probiotic potential of lactic acid bacteria isolated from honeybees stomach: Functional and technological insights Combining wide seedling strip planting with a higher plant density results in greater yield gains in winter wheat Appropriate application of organic fertilizer enhanced yield, microelement content, and quality of maize grain under a rotation system 2-Chloro-6-(trichloromethyl) pyridine stabilized early japonica rice yield by increasing nitrogen uptake and utilization under reduced nitrogen rates Optimizing rice yield and phosphorus use efficiency through root morphology and soil phosphorus management in agricultural soils
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1