{"title":"Molecular simulation strategies for the discovery of selective inhibitors of β-catenin","authors":"S. Saranyadevi, V. Shanthi","doi":"10.1142/s0219633620500224","DOIUrl":null,"url":null,"abstract":"Tumor dissemination and relapse in lung cancer were found to be due to the existence of cancer stem cells. In particular, the [Formula: see text]-catenin pathway is found to be one of the crucial pathways in maintaining the stem-like properties of the cells. Thus, targeting the [Formula: see text]-catenin family of proteins is a significant therapeutic route in the treatment of lung cancer. Therefore, in the present study, a pharmacophore-based drug repurposing approach was accomplished to pinpoint potent [Formula: see text]-catenin inhibitors from the DrugBank database. Primarily, ligand-based pharmacophore hypothesis (AAHHR) was generated using existing [Formula: see text]-catenin inhibitors available in the literature and utilized for library screening. Subsequently, the inhibitory activity of the screened compounds was examined by the hierarchical docking process and the Prime MM-GBSA algorithm. Moreover, quantum chemical calculations and molecular dynamics simulations were executed to analyze the inhibitory effects of the screened hit molecule. The results indicate that hit molecule, DB08047 was found to possess better binding free energy, favorable ligand strain energy, satisfactory pharmacokinetic properties and superior free energy landscape profile. Eventually, the pIC[Formula: see text] values of the lead compounds were predicted by the AutoQSAR algorithm. It is noteworthy to mention that DB08047 was found to possess pyrazole scaffolds which could downregulate [Formula: see text]-catenin pathway and thus facilitate the controlled cell growth/inhibit tumor growth.","PeriodicalId":49976,"journal":{"name":"Journal of Theoretical & Computational Chemistry","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2020-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1142/s0219633620500224","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Theoretical & Computational Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s0219633620500224","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 1
Abstract
Tumor dissemination and relapse in lung cancer were found to be due to the existence of cancer stem cells. In particular, the [Formula: see text]-catenin pathway is found to be one of the crucial pathways in maintaining the stem-like properties of the cells. Thus, targeting the [Formula: see text]-catenin family of proteins is a significant therapeutic route in the treatment of lung cancer. Therefore, in the present study, a pharmacophore-based drug repurposing approach was accomplished to pinpoint potent [Formula: see text]-catenin inhibitors from the DrugBank database. Primarily, ligand-based pharmacophore hypothesis (AAHHR) was generated using existing [Formula: see text]-catenin inhibitors available in the literature and utilized for library screening. Subsequently, the inhibitory activity of the screened compounds was examined by the hierarchical docking process and the Prime MM-GBSA algorithm. Moreover, quantum chemical calculations and molecular dynamics simulations were executed to analyze the inhibitory effects of the screened hit molecule. The results indicate that hit molecule, DB08047 was found to possess better binding free energy, favorable ligand strain energy, satisfactory pharmacokinetic properties and superior free energy landscape profile. Eventually, the pIC[Formula: see text] values of the lead compounds were predicted by the AutoQSAR algorithm. It is noteworthy to mention that DB08047 was found to possess pyrazole scaffolds which could downregulate [Formula: see text]-catenin pathway and thus facilitate the controlled cell growth/inhibit tumor growth.
期刊介绍:
The Journal of Theoretical and Computational Chemistry (JTCC) is an international interdisciplinary journal aimed at providing comprehensive coverage on the latest developments and applications of research in the ever-expanding field of theoretical and computational chemistry.
JTCC publishes regular articles and reviews on new methodology, software, web server and database developments. The applications of existing theoretical and computational methods which produce significant new insights into important problems are also welcomed. Papers reporting joint computational and experimental investigations are encouraged. The journal will not consider manuscripts reporting straightforward calculations of the properties of molecules with existing software packages without addressing a significant scientific problem.
Areas covered by the journal include molecular dynamics, computer-aided molecular design, modeling effects of mutation on stability and dynamics of macromolecules, quantum mechanics, statistical mechanics and other related topics.