Delmas V. Douanla, Alim, Camus G. L. Tiofack, Alidou Mohamadou
{"title":"Heavy ion–acoustic rogue waves in magnetized electron–positron multi-ion plasmas","authors":"Delmas V. Douanla, Alim, Camus G. L. Tiofack, Alidou Mohamadou","doi":"10.1002/ctpp.202000036","DOIUrl":null,"url":null,"abstract":"<p>Non-linear heavy ion-acoustic waves (HIAWs) are studied in a homogeneous magnetized four-component multi-ion plasma composed of inertial heavy negative ions, light positive ions, and inertia-less non-extensive electrons and positrons. The non-linear Schrödinger equation is derived in this model using the perturbation method. The criteria for modulational instability of HIAWs and the basic features of finite-amplitude heavy ion acoustic rogue waves (HIARWs) are investigated. The presence of the magnetic field was found to reduce the amplitude of HIARWs and enhances the stability. It is interesting to note that increasing positive ion mass causes decreases in the amplitude and width of rogue waves, which is opposite behaviour to that demonstrated in the previous study of these waves in an unmagnetized plasma. Furthermore, it is also shown that striking parameters, such as the non-extensive parameter, the positron number density, the electron number density, the electron temperature, and the magnetic field parameter, play an undeniable role on the stability of waves packets. The findings of the present investigation may be of wide relevance to some plasma environments, such as active galactic nuclei, pulsar magnetospheres, and other magnetic confinement systems.</p>","PeriodicalId":10700,"journal":{"name":"Contributions to Plasma Physics","volume":"60 9","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2020-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/ctpp.202000036","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Contributions to Plasma Physics","FirstCategoryId":"101","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ctpp.202000036","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, FLUIDS & PLASMAS","Score":null,"Total":0}
引用次数: 1
Abstract
Non-linear heavy ion-acoustic waves (HIAWs) are studied in a homogeneous magnetized four-component multi-ion plasma composed of inertial heavy negative ions, light positive ions, and inertia-less non-extensive electrons and positrons. The non-linear Schrödinger equation is derived in this model using the perturbation method. The criteria for modulational instability of HIAWs and the basic features of finite-amplitude heavy ion acoustic rogue waves (HIARWs) are investigated. The presence of the magnetic field was found to reduce the amplitude of HIARWs and enhances the stability. It is interesting to note that increasing positive ion mass causes decreases in the amplitude and width of rogue waves, which is opposite behaviour to that demonstrated in the previous study of these waves in an unmagnetized plasma. Furthermore, it is also shown that striking parameters, such as the non-extensive parameter, the positron number density, the electron number density, the electron temperature, and the magnetic field parameter, play an undeniable role on the stability of waves packets. The findings of the present investigation may be of wide relevance to some plasma environments, such as active galactic nuclei, pulsar magnetospheres, and other magnetic confinement systems.