Hypersatellite Kα Production in Trapped Ar Ions at KK Trielectronic Recombination Energies

IF 1.7 Q3 PHYSICS, ATOMIC, MOLECULAR & CHEMICAL Atoms Pub Date : 2023-03-16 DOI:10.3390/atoms11030058
Weronika Biela-Nowaczyk, P. Amaro, Filipe Grilo, D. L. La Mantia, J. Tanis, A. Warczak
{"title":"Hypersatellite Kα Production in Trapped Ar Ions at KK Trielectronic Recombination Energies","authors":"Weronika Biela-Nowaczyk, P. Amaro, Filipe Grilo, D. L. La Mantia, J. Tanis, A. Warczak","doi":"10.3390/atoms11030058","DOIUrl":null,"url":null,"abstract":"We report measurements of hypersatellite radiation of argon ions in the electron energy region of 5200 eV to 7500 eV. Here, we observed a strong enhancement of this hypersatellite Kαh production. Trielectronic recombination (TR) is discussed as a possible channel for Kαh production leading to this enhancement where main TR resonances are expected to occur. Data analysis was mainly based on the extracted intensity ratio of hypersatellite Kαh to Kα lines (Kαh/Kα). In addition, the collisional excitation and the collisional ionisation of the K-shell ions were modeled as main background processes of the Kα X-ray production. The Kαh/Kα intensity ratio shows a significant rise around 6500 eV electron energy by a factor of about two above the background level. This observation is compared with calculations of the expected electron energies for the resonant Kαh emission due to the KK TR process. The observed rise as a function of the electron collision energy, which occurs in the vicinity of the predicted TR resonances, is significantly stronger and energetically much wider than the results of theoretical calculations for the TR process. However, the experimental evidence of this process is not definitive.","PeriodicalId":8629,"journal":{"name":"Atoms","volume":" ","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2023-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Atoms","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/atoms11030058","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, ATOMIC, MOLECULAR & CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

We report measurements of hypersatellite radiation of argon ions in the electron energy region of 5200 eV to 7500 eV. Here, we observed a strong enhancement of this hypersatellite Kαh production. Trielectronic recombination (TR) is discussed as a possible channel for Kαh production leading to this enhancement where main TR resonances are expected to occur. Data analysis was mainly based on the extracted intensity ratio of hypersatellite Kαh to Kα lines (Kαh/Kα). In addition, the collisional excitation and the collisional ionisation of the K-shell ions were modeled as main background processes of the Kα X-ray production. The Kαh/Kα intensity ratio shows a significant rise around 6500 eV electron energy by a factor of about two above the background level. This observation is compared with calculations of the expected electron energies for the resonant Kαh emission due to the KK TR process. The observed rise as a function of the electron collision energy, which occurs in the vicinity of the predicted TR resonances, is significantly stronger and energetically much wider than the results of theoretical calculations for the TR process. However, the experimental evidence of this process is not definitive.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在KK三电子复合能下捕获的Ar离子的超卫星Kα产生
本文报道了氩离子在5200 eV ~ 7500 eV的超卫星辐射的测量结果。在这里,我们观察到这种超卫星k - αh的产生有很强的增强。讨论了三电子复合(TR)作为k - αh产生的可能通道,导致这种增强,主要TR共振预计会发生。数据分析主要基于提取的高卫星Kαh与Kα谱线的强度比(Kαh/Kα)。此外,k -壳层离子的碰撞激发和碰撞电离是Kα x射线产生的主要背景过程。k - αh/ k - α强度比在6500 eV电子能量附近显著上升,比背景水平高出约2倍。这一观测结果与KK - TR过程引起的共振Kαh发射的期望电子能量的计算结果进行了比较。观测到的电子碰撞能量的上升,发生在预测的TR共振附近,比TR过程的理论计算结果明显更强,能量更宽。然而,这一过程的实验证据并不确定。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Atoms
Atoms Physics and Astronomy-Nuclear and High Energy Physics
CiteScore
2.70
自引率
22.20%
发文量
128
审稿时长
8 weeks
期刊介绍: Atoms (ISSN 2218-2004) is an international and cross-disciplinary scholarly journal of scientific studies related to all aspects of the atom. It publishes reviews, regular research papers, and communications; there is no restriction on the length of the papers. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible. Full experimental and/or methodical details must be provided for research articles. There are, in addition, unique features of this journal: -manuscripts regarding research proposals and research ideas will be particularly welcomed. -computed data, program listings, and files regarding the full details of the experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material. Scopes: -experimental and theoretical atomic, molecular, and nuclear physics, chemical physics -the study of atoms, molecules, nuclei and their interactions and constituents (protons, neutrons, and electrons) -quantum theory, applications and foundations -microparticles, clusters -exotic systems (muons, quarks, anti-matter) -atomic, molecular, and nuclear spectroscopy and collisions -nuclear energy (fusion and fission), radioactive decay -nuclear magnetic resonance (NMR) and electron spin resonance (ESR), hyperfine interactions -orbitals, valence and bonding behavior -atomic and molecular properties (energy levels, radiative properties, magnetic moments, collisional data) and photon interactions
期刊最新文献
A Study of the Atomic Processes of Highly Charged Ions Embedded in Dense Plasma Reactions of CH2OO, CH3CHOO, and (CH3)2COO with Methane through the Formation of Intermediate Complex Photon and Particle Impact Spectroscopy and Dynamics of Atoms, Molecules and Clusters On Rayleigh–Taylor Dynamics Modeling Femtosecond Reduction of Atomic Scattering Factors in X-ray-Excited Silicon with Boltzmann Kinetic Equations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1